Stefan Metzger¹, Ankur R. Desai², David Durden¹, Jörg Hartmann³, Jiahong Li⁴, Hongyan Luo¹, Natchaya Pingintha-Durden¹, Torsten Sachs⁵, Andrei Serafimovich⁵, Cove Sturtevant¹, Ke Xu²

[1]: Battelle Ecology, National Ecological Observatory Network Project, Boulder, CO, USA
[2]: University of Wisconsin-Madison, Dept. of Atmospheric and Oceanic Sciences, Madison, WI, USA
[3]: Alfred Wegener Institute - Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
[4]: LI-COR Biosciences, Lincoln, NE, USA
[5]: GFZ German Research Centre for Geosciences, Potsdam, Germany

NEON: from scientific strategy to long-term operation

National Ecological Observatory Network

A project sponsored by the National Science Foundation and operated under cooperative agreement by Battelle.

the spirit

 incorporate lessons-learned through collaborations with bottom-up networks like AmeriFlux, ICOS, LTER, TERN...

• NEON's centralized approach lends itself to explore novel systemic solutions

- starting to give back:
 - boots on the ground
 - software
 - data
 - educational resources

"Well Poster, we have a real gove and take relationship I save her all of wy loss and she takes to"

overview

- why bridging observational scales?
- NEON: designed for scaling
- centralized data operations and monitoring
- scalable scientific computing
- combining ground-based, airborne and space-borne data
- summary and outlook

overview

- why bridging observational scales?
- NEON: designed for scaling
- centralized data operations and monitoring
- scalable scientific computing
- combining ground-based, airborne and space-borne data
- summary and outlook

100 Journal of Ecology

Avenual of Avenues, 2010, 194, 28-67

FORUM Identification of 100 fundamental ecological questions

William J. Sutherland¹, Robert P. Freckleton², H. Charles J. Godfray³, Steven R. Belssinger⁴, Tim Benton³, Duncan D. Cameron², Yohay Carmel⁶, David A. Coomes⁷, Tim Coulson⁶, Mark C. Emmerson⁹, Rosemary S. Halls¹⁰, Graeme C. Hays¹¹, Dave J. Hodgson¹², Michael J. Hutchings¹³, David Johnson¹⁴, Julia P. G. Jones¹⁵, Matt J. Keeling¹⁸, Hanna Kokko¹⁷, William E. Kunin¹⁸, Xavier Lambin¹⁴, Owen T. Lewis³, Vadvinder Mathi¹⁵, Nova Mieszkowska²⁰, E. J. Milner-Gulland²¹, Ken Norris²², Albert B. Phillimore²³, Drew W. Purves²⁹, Jane M. Reid¹⁴, Daniel C. Reuman^{31,38}, Ken Thompson³, Justin M. J. Travis¹⁴, Lindsay A. Turnbull²⁶, David A. Wardle²⁷ and Thorsten Wiegand²⁸

 How does spatial structure influence ecosystem function and how do we integrate within and between spatial scales to assess function?

ABRUPT IMPACTS OF CLIMATE CHANGE ANTICIPATING SUPPRISES

- "...data still remain too sparse spatially to test mechanisms of change using models…"
- "...provide the required data at <u>high spatial and temporal</u> <u>resolution</u> with the necessary continuity..."

CUMMENTARY

Carbon Metabolism of the Terrestrial Biosphere: A Multitechnique Approach for Improved Understanding

J. G. Conselect.¹⁰ H. A. Meconey,² D. D. Ealderetai,⁵ J. A. Berry,⁴ J. R. Fibberieger,² C. R. Field,³ S. T. Gesser,² D. Y. Hollinger,² J. F. Hunst,ⁿ R. B. Jackson,⁴ S. W. Ronning, ¹⁰ G. R. Sibever,²¹ W. Steffen,³¹ S. E. Teombore,¹¹ R. Valennint,⁴⁴ and R. Y. Bond⁴²

- "... <u>scaling down</u> from global and continental measurements and <u>scaling</u> <u>up</u> from stand-level measurements both <u>are critical for an integrative</u> <u>program of C research</u>."
- "Each approach has <u>different spatial and temporal domains</u> ..., and they <u>have the potential to constrain the next level up or down</u>"
- "One of the main barriers to rapid improvement of models is the <u>lack of</u> ground data for validation purposes."

overview

- why bridging observational scales?
- NEON: designed for scaling
- centralized data operations and monitoring
- scalable scientific computing
- combining ground-based, airborne and space-borne data
- summary and outlook

The National Ecological Observatory Network

NEON multi-scale observing system

Battelle De Business of Innovation

state of the NEON "fairytale"

state of the NEON "fairytale"

D01: HARVARD FOREST

D02: Smithsonian Environmental Research Center - SERC

D03: Ordway-Swisher Biological Station - OSBS

D03: Ordway-Swisher Biological Station - Barco Lake - BARC

D05: UNDERC - UNDE

D07: Mountain Lake Biological Station - MLBS

instrumented sites D07: Walker Branch - WALK

D10: North Sterling, CO - STER

instrumented sites D10: Arikaree River - ARIK

D14: Santa Rita Experimental Range - SRER

D18: Toolik - TOOL

D18: Barrow Environmental Observatory - BARR

in-situ sampling, proximal and remote sensing Field survey

Field sampling

Field sampling

Field sampling

NEON AOP Flight Operations

in-situ sampling, proximal and remote sensing Atmospheric Correction

the National Ecological Observatory Network

why 20 domains?

Potential of Multivariate Quantitative Methods for Delineation and Visualization of Ecoregions

BULLING W. HARVENOUT FORFIEST & HOFFMAN

- Construction Description of the Association
- Then Parket Ferrical and Statementality
- WID HAR DRIV, MATCHIEF,
- East Hays. Incomes 5751 daily

terri en la Montelar un inde accuter entern. A la seconda de la seconda de

Number of Domains

data: science implications

Hargrove and Hoffman, 1999 & 2004

Mahecha et al., 2017

overview

- why bridging observational scales?
- NEON: designed for scaling
- centralized data operations and monitoring
- scalable scientific computing
- combining ground-based, airborne and space-borne data
- summary and outlook

data operations architecture

science operations management

- problem tracking and resolution along the entire chain
 - training
 - sensor preventive maintenance
 - sensor calibration
 - sensor health status monitoring, incident tracking and resolution
 - data processing
 - continuous data quality monitoring
 - data revisioning

science operations management

• problem tracking and resolution along the entire chain

science operations management

• problem tracking and resolution along the entire chain

Digital Camera Imagery

NEON discrete LiDAR Data – Point Cloud

Discrete and Waveform LiDAR

Sample archiving

nean	NEON Data	101910 201 201
🕈 🛛 skaligana.	DATE PRODUCT CREALOR BROKES AND DOCUMENTS 340	
-toms		

Use the below motions to exploit NEON data collected to date. Duiling NEON's Commettion attain totals produce will continue to be added and All are considered as provincing will ally. Although the datacook test before and and all are undergoing reprocessing to review efformation about subjecte data, sampley, and speciment that are systable on compett, with that and the subjectives. Pfease that prior feedback of being improve the partial

Pilot project: global interoperability

Globally interoperable eddy-covariance data products through affiliating NEON sites with AmeriFlux and FLUXNET

Advance Stellan Mongari, Sonordin Aprivali, Sonordan Horaff, Sheed Darmeri, Incorpora Laci, Onco. Figure", Etherter Fasteneller, Coop Starsenant, Massaret Toror

AMinistra 111 Kalorin Franze, Automa Entrajed Churrad av Keizeck Project, Balder, 65, 060, 12 Lawrence Reveals, Activity Activity, American Monagement Project, Revealey, CA, IDA (10) Over 101 of Toolsk Integrated Cathier Otherwing System - Entracitem Thematic Control, Vitolau, Pals

 NEON gains participation in a globally harmonized network. improving scientific value and cross-network use

The Physics area of Democratics

 AmeriFlux gains 40% additional active sites

Battelle The Business of Innovation

neen

16

Pilot project: global interoperability

educational resources

educational resources

educational resources

overview

- why bridging observational scales?
- NEON: designed for scaling
- centralized data operations and monitoring
- scalable scientific computing
- combining ground-based, airborne and space-borne data
- summary and outlook

data operations architecture

software: eddy4R eddy-covariance R-packages

• eddy4R family of R-packages (raw data \rightarrow 30 min)

software: eddy4R eddy-covariance R-packages

- eddy4R family of R-packages (raw data \rightarrow 30 min)
- NEON's eddy4R, nneo, metscanner + MPI's REddyProc R-packages: end-to-end, modularly adjustable and extensible workflows in single R-environment

software: community access and extensibility

- Docker shipping container system for code
- eddy4R-Docker: turn-key, reproducible, extensible and portable data processing + analysis environment
- DevOps community development framework

data: eddy-covariance

overview

- why bridging observational scales?
- NEON: designed for scaling
- centralized data operations and monitoring
- scalable scientific computing
- combining ground-based, airborne and space-borne data
- summary and outlook

Coverage

environmental response function virtual control volume

environmental response function virtual control volume

volume-projected heat storage change

grid-projected turbulent heat flux

2011-08-15 00:00 CST

Xu et al. (2017)

environmental response function virtual control volume

application examples

- near-real-time capability (1 week \rightarrow 1 month, e.g. AmeriFlux)
- operational data fusion (e.g., NASA ECOSTRESS)

Xu et al. (2017)

overview

- why bridging observational scales?
- NEON: designed for scaling
- centralized data operations and monitoring
- scalable scientific computing
- combining ground-based, airborne and space-borne data
- summary and outlook

conclusions and outlook

- bridging scales one of the fundamental challenges in ecology
- NEON's observation hierarchy is designed for scaling (continuity)
- centralized data operations efficiently manage data quality and standardization
- coordinated, interoperable NEON flux, in-situ, proximal and remote sensing data
- public NEON "eddy4R" + GitHub + Docker flux software and usability tools
- combining data across scales with environmental response functions
- joint proposal writing for operational data fusion

airborne remote-sensing observation node (ARGON)

- NEON data products span large spatio-temporal scales, e.g. airborne remote sensing and automated tower measurements
- we aim to bridge these spatiotemporal gaps in NEON data products using a unmanned aerial vehicle remote-sensing platform

- objectives
 - develop less expensive and more agile remotely sensed data products.
 - enabling target-of-opportunity measurement campaigns for extreme ecological events

overview

- why bridging observational scales?
- NEON: designed for scaling
- centralized data operations and monitoring
- scalable scientific computing
- combining ground-based, airborne and space-borne data
- summary and outlook