

COST Action ES1309 OPTIMISE

Introduction to OPTIMISE review papers:

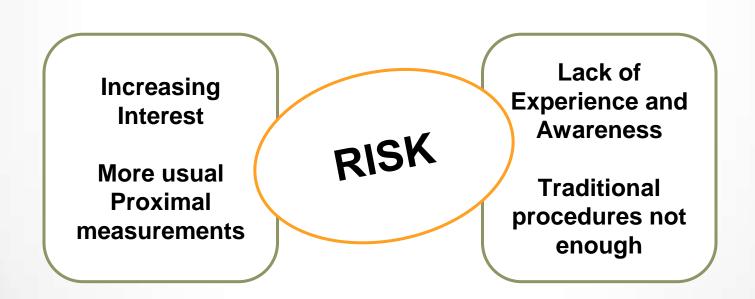
Sun-Induced Chlorophyll Fluorescence - from instrument characterization and measurement protocols to retrieval methods

Presenters: Javier Pacheco-Labrador, M. Pilar Cendrero-Mateo, Helge Aasen, Shari Van Wittenberghe

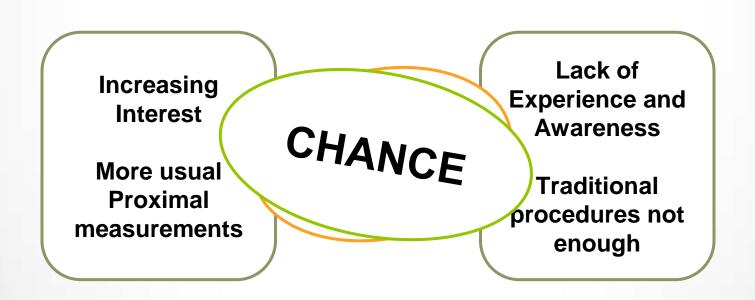
OVERVIEW

- MOTIVATION
- 2. INTRODUCTION SUN-INDUCED CHLOROPHYLL FLUORESCENCE NOMENCLATURE
- 3. OPTIMISE DISSEMINATION PAPERS
- 4. OPTIMISE SPECIAL ISSUE

- Scientific community interest on Sun-Induced Chlorophyll Fluorescence (F) is skyrocketing in the last years
 - Boosted by up-coming FLEX mission and Remote F retrievals from meteorological satellites


Increasing Interest

More usual Proximal measurements


Lack of Experience and Awareness

Traditional procedures not enough

- Scientific community interest on Sun-Induced Chlorophyll Fluorescence (F) is skyrocketing in the last years
 - Boosted by up-coming FLEX mission and Remote F retrievals from meteorological satellites

- Scientific community interest on Sun-Induced Chlorophyll Fluorescence (F) is skyrocketing in the last years
 - Boosted by up-coming FLEX mission and Remote F retrievals from meteorological satellites

- Spectroradiometric measurements
 - One of the least reliable of all physical measurements (Kostkowski, 1997)
 - Multidimensional problem
 - Instability of measuring instruments and the uncertainty of the standards
 - Principles and techniques used for eliminating (or reducing) measurement errors due to this multidimensionality or instability have not been widely disseminated
- "Traditional" Field Spectroradiometry
 - Measurement of reflectance factors
 - Radiometric calibration usually not needed or not compulsory for all applications
 - Assess strong signals (phenology, land covers…)
 - Comparison with remote sensors with quite coarser spectral resolutionS

Can afford relatively large uncertainties

- "Traditional" Field Spectroradiometry
 - 1. Instrumentation
 - High trust on the producer specifications
 - Lack of instrumental characterization
 - Lack of uncertainty quantification / propagation

2. Methods

- ▶ Not always robust to variation in E^{\downarrow}
 - □ Reference Target –T –T –T –T –T ...
- New platforms (towers, UAVs)
 - □ Atmospheric depth effects usually ignored
- Many metadata still not even recorded

EXPENSIVE

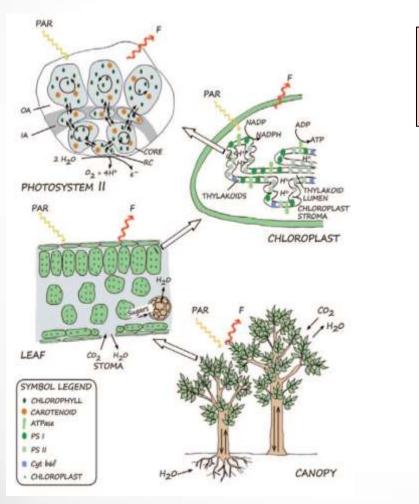
*MORE SAMPLES *EASIER PROCESSING

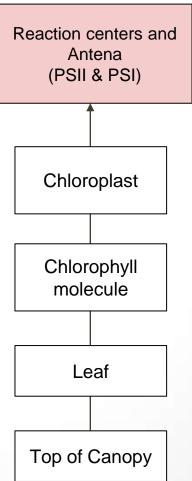
- Sun-Induced Chlorophyll Fluorescence (F)
 - Unclear use of terminology
 - Different retrieval methods (Robustness?)
 - Different post-processing (understanding?) of the signal

UNDER DEVELOPMENT

- "F-dedicated" Field Spectroradiometry
 - ► F = Relative metric \rightarrow f(Vegetation variability)
 - Treatments, phenotypes, species...
 - Phenological changes
 - F = Absolute Radiometric Quantity
 - Model and understand plant physiology
 - Comparable (sensors, datasets)

Can afford small Uncertainties ?

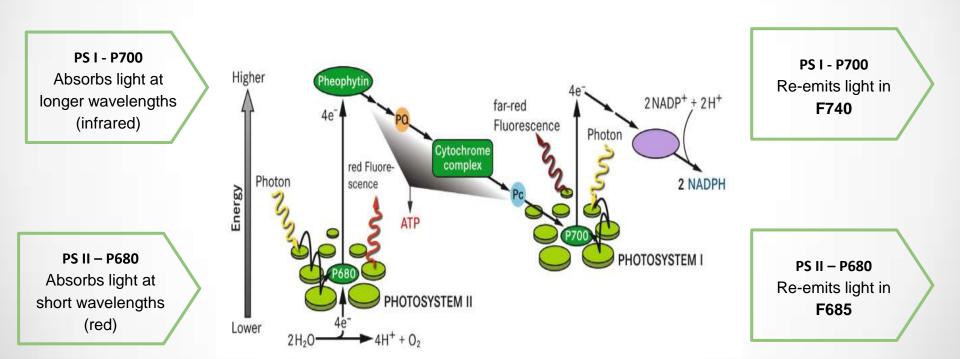

Can afford
very small
uncertainties
?

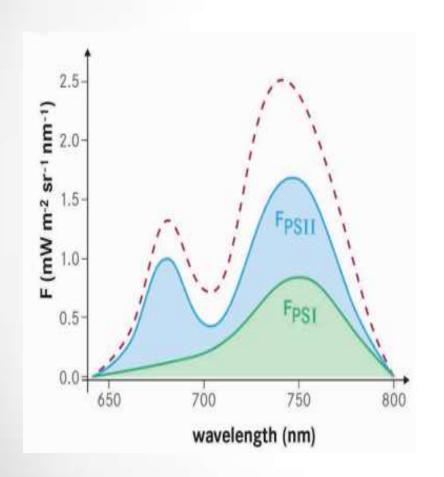

MEASURING REFLECTANCE FACTORS IS NOT THE SAME THAN MEASURING SUN INDUCED

FLUORESCENCE

2. INTRODUCTION SUN-INDUCED CHLOROPHYLL

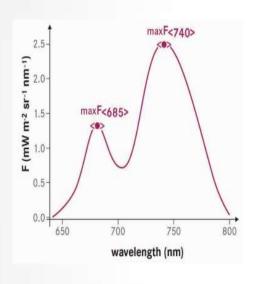
FLUORESCENCE NOMENCLATURE

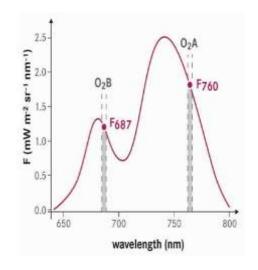


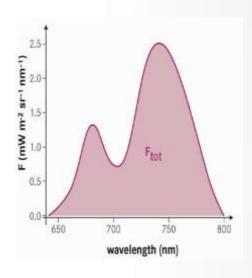

Credits: Porcar-Castell et al. 2014

2. INTRODUCTION SUN-INDUCED CHLOROPHYLL

FLUORESCENCE NOMENCLATURE


Sun-Induced Chlorophyll Fluorescence (**F**) is the plants light re-emission in the red (F685) and near infrared (F740) in response to absorbed radiation.





2. INTRODUCTION SUN-INDUCED CHLOROPHYLL

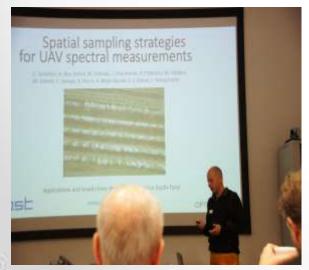
FLUORESCENCE NOMENCLATURE

maxF<685> maxF<740> F₆₈₇ F₇₆₀

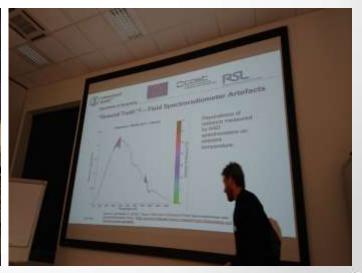
F_{tot}

3. OPTIMISE DISSEMINATION PAPERS

Idea (Dubrovnik):


Best practice for UAV Spectral sampling
OPTIMISE - BUS

→ Collect and summarize the knowledge on "good" reflectance and fluorescence (radiance) measurements


3. OPTIMISE DISSEMINATION PAPERS

- Practice for spectral sampling
 - September 2016: ITC
 - October 2016: Bolzano
 - November 2016: Tartu
 - March 2017: Bucharest
 - October 2017: Luxembourg

3. OPTIMISE DISSEMINATION PAPERS

- → Outcome: OPTIMISE three (+2) papers (read: manuscripts)
 - → Instrumental considerations for the measurement of sun induced fluorescence (led by Javier)
 - → Measuring sun-induced fluorescence at different scales: Overview over instruments, measurement setups and protocols at leaf and canopy scale (led by Helge)
 - → Ground measurements of Solar-induced chlorophyll fluorescence: retrievals methods and practical cases (led by MaPi)
 - → (UAV spectral sensing systems sensors, geometric and radiometric data processing and best practice from particle to pixel (Helge, Eija, Arko))
 - → (publication on UAV survey, led by Helge)

4. OPTIMISE SPECIAL ISSUE

remote sensing

OPTIMISE: Innovative Optical Tools for Proximal Sensing of Ecophysiological Processes

An Open Access Journal by MDPI

Deadline for manuscript submissions: 31 October 2018

Keywords

- Remote Sensing
- Proximal Sensing
- Unmanned Aerial Vehicles
- Reflectance
- Fluorescence
- Spectral Information Systems
- Biogeochemical Cycles

Submission

- Open!
- Submit online at <u>www.mdpi.com</u>
- Published upon acceptance
- Research articles, review articles as well as short communications are invited
- Open access, processing charge

THANKS FOR YOUR ATTENTION

QUESTIONS / REMARKS