EO of phenology for land surface modellers and ecologists -From field radiometry to MODIS time-series of NDVI.

France Gerard, Centre for Ecology and Hydrology, UK;

- Charles George, CEH, UK
- Cecilia Chavana-Bryant, Oxford Univ., UK
- Graham Weedon, Met. Office, UK;
- Garry Hayman, CEH, UK
- Yadvinder Malhi, Oxford Univ., UK
- Andrew Bradley, Imperial college, UK

My 20 minute story today

- Phenology and land surface modelling
 Dynamic Global Vegetation Model part of the land surface models
- Phenology with MODIS style data
- Phenology with in situ radiometry

Phenology representation in models -10 yrs ago

Old slide from M.Disney, P.Lewis and S.Quegan (University College London & Sheffield Univ.)

Phenology in models – current efforts

JULES: at least 3 different schemes being developed; one involves the introduction of a drought deciduous Plant functional type.

ORCHIDEE: a new leaf litter fall dynamics scheme for tropical plant functional type. It results in a higher leaf turnover in periods of high productivity. Other activities?

LPJ and other models: ask the audience....

Question in 2005 – in tropical America, what is driving Phenology, radiation or precipitation ?

Global Change Biology, 17: 2245–2260, June 2011; doi: 10.1111/j.1365-2486.2011.02405.x

Question in 2012 – tropical and subtropical America, where are the forests evergreen, deciduous ?

In Prep.

Approach: Fourier based analysis

Spectral Analysis

To detect a periodic or quasi-periodic components in a time series

Coherency Analysis

Compare pairs of time series

Coherency = measure of similarity

Difference in phase

Weedon G (2003) Time-Series Analysis and Cyclostratigraphy. Cambridge University Press

Leaf phenology

EVI & NDVI- MODIS 1km, monthly, 2000 – 2006

CPTEC GL-1.2 physical model 0.4° x 0.4°, monthly 2000 – 2006

Radiation

Precipitation

TRMM 0.25° x 0.25°, monthly 2000-2006

~ 7 yr time period was determined by the CPTEC radiation and MODIS data For coherency analysis, data were re-sampled to match CPTEC radiation data:0.4° x 0.4°,

Example time-series

Strength of annual cycle

Is there seasonality: can we observe an annual cycle ? Where?

If, yes - how strong is the signal and where are the strong and weak signals?

Leaf phenology

relative power

Radiation

Precipitation

What is driving phenology in tropical America?

- 1. Precipitation is 'in phase', radiation 'lags' or is in 'anti-phase'.
- 2. Precipitation is 'in phase' and radiation 'leads'.
- 3. Precipitation and radiation 'in phase'.
- 4. Radiation is 'in phase' and precipitation 'lags' or is in 'anti-phase'.
- 5. Radiation is 'in phase' and precipitation 'leads'.

- 6. Precipitation and radiation 'leads'.
- 7. Precipitation 'leads' and radiation 'lags' or is in 'anti-phase'.
- 8. Radiation 'leads' and precipitation 'lags' or is in 'anti phase'.

Where are the evergreen & deciduous forests?

Which of the patterns are real?

Three decades of multi-dimensional change in global leaf phenology

Robert Buitenwerf^{1*}, Laura Rose^{1,2} and Steven I. Higgins^{3,4}

GIMMS NDVI3g

PUBLISHED ONLINE: 2 MARCH 2015 | DOI: 10.1038/NCLIMATE2533

LETTERS

0.0 4.7 7.7 10.7 13.7 Phenological change (s.d.)

0.0.0.0.0

Which of the patterns are real?

Plant functional types Ivits et al 2014 Rem. Sens GIMMS NDVI3g

Global trends in seasonality Eastman et al 2014 Rem Sens. GIMMS NDVI3g

- - Class 1 Sign. increase in Amp 0 Class 2 - Sign. increase in Amp 1 Class 3 - Sign. increase in Amp 0 and Amp 1 NDVI < 0.15 — Biome Boundaries

How is in situ radiometry relevant?

doi:10.1038/natu

What is 'evergreen' or 'deciduous' in the tropics? How do we interpret the VI (NDVI & EVI) amplitude?

LETTER

Amazon forests maintain consistent canopy structure and greenness during the dry season

Douglas C. Morton¹, Jyoteshwar Nagol^{2,3}, Claudia C. Carabajal^{1,4}, Jacqueline Rosette^{1,2,5}, Michael Palace⁶, Bruce D. Cook¹. Eric F. Vermote¹, David J. Harding¹ & Peter R. J. North⁵

Others say: VIs show a combined effect of leaf reflectance changing with age and LAI changes. (Samanta et al 2012 JGR ...and several others)

Some say: seasonal VI cycles are an artefact of sun angle and shadowing (Morton et al Nature 2014)

SAMANTA ET AL.: AMAZON SEASONAL GREENING

VI = leaf reflectance; LAI; LAD & clumping, view & sun angles

Tree leaf:

How does reflectance change with leaf age?

Tree canopy:

How synchronised is the life cycle of leaves (flushing and abscission) within a tree canopy?

Forest canopy:

How synchronised is the life cycle of leaves between each tree?

Data from Whytam Wood (UK) C. George & C. Rowland (CEH)

How does reflectance change with leaf age?

Spectral leaf life cycle

Spectral leaf life cycle

Morphological leaf life cycle

Cecilia Chavana-Bryant – in prep

LA: leaf area; LM: Leaf Mass; LT: leaf thickness; LTD: leaf tissue density; LMA: leaf mass per area

Chemical leaf life cycle

Cecilia Chavana-Bryant – in prep

NDVI time series: from leaf to tree to forest

(1) Leaf NDVI average for individual tree

Cecilia Chavana-Bryant – in prep

(2) Tree time series of NDVI by combining leaf reflectance with time series of branch leaf demography
(*i.e.* N^o of leaves of a particular age on 1m branch)

(3) Site time series of NDVI by combining leaf reflectance with data on leaf flush and leaf abscission

Chris Doughty (OUCE, Oxford): recent analysis of LAI and litter data from 1ha RAINFOR plots

Summarising

- Global modellers search for broad brush global patterns, which suits coarse scale resolution imagery ("1km...aaargh... too much detail!")
- But we need to get the detail right to make sure we can be confident in the broad brush.
- Are the subtleties seen by the radiometry important? Maybe, maybe not.
- Covering both the spatial and temporal variations is key.

Thank you

France Gerard, Centre for Ecology and Hydrology, UK;

- Charles George, CEH, UK
- Cecilia Chavana-Bryant, Oxford Univ., UK
- Graham Weedon, Met. Office, UK;
- Garry Hayman, CEH, UK
- Yadvinder Malhi, Oxford Univ., UK
- Andrew Bradley, Imperial college, UK

