Low-cost Wireless sensor network system for micro-climate monitoring

Mark Neal, Aberystwyth University mjn@aber.ac.uk

What Syngenta want

- Greenwash?
- Originally:
 - Micro-climate monitoring
 - Bio-diversity
 - Field-margins
- Now:
 - Crop growth monitoring
 - Effect of micro-climate within fields

Parameters

• Air

- Temperature
- Humidity
- Pressure
- Wind
 - Speed and direction
- Soil
 - Temperature
 - Humidity
- Light
 - "Intensity" (ideally PAR)
 - Measure of canopy density
 - Senescence

Carbon Dioxide

Methane

Rainfall

Sensors

- Cheap! (mostly)
- Hobby quality has to be good enough
 - DHT 22 has 0.1C resolution (around 0.4C accuracy)
 - Soil probe similar (slightly more accurate)
- Rowind is lovely but...
 - Expensive
 - Power-hungry

Image from adafruit.com

Light sensors

- Again "hobby" quality
- Two RGB sensors:
 - ISL29125 (intersil)
 - TCS34725 (Texas)
- Just photodiodes with RGB masks
- TCS board has a white LED as well
- Why two types?

Image from adafruit.com

Light sensors

- Again "hobby" quality
- Two RGB sensors:
 - ISL29125 (intersil)
 - TCS34725 (Texas)
- Just photodiodes with RGB masks
- TCS board has a white LED as well
- Why two types?

Image from adafruit.com

From intersil (ISL29125, bottom) and Texas datasheets (TCS34725, top)

How to get the most from the light sensors?

- RGB readings at face-value
 - Can separate grossly different colours with single readings
 - Quite noisy, but with multiple reads and taking medians can discriminate more finely

Calibration?

- Can I afford the time?
- What will I gain?

• Exploit variability?

- Bio-diversity (identical sensors)
- Crops (heterogeneous sensors?)

• Filtering strategies (open to suggestions!)

- Add rejection band filter?

Image from omegafilters.com

Data transmission

- Pretty low bandwidth
 - Expecting ~100 bytes per station per minute
- Encoded as plain ASCII
 - Much easier to debug
 - Simple to store and process
- Data content
 - 4 x Temp and Humidity
 - 3 x Light

Data transmission

- 433MHz vs 2.4GHz
 - RFM69
 - Xbee
 - 802.11
- Cost
- Range
- Data rates
- Power consumption

Moteino

- Arduino compatible with a 433MHz radio module built-in
 - Range reliably ~500m
 - Significantly more with some tweaking
 - Line-of-sight (pretty much)
- Really easy to get going with
 - Nice libraries
- Can do addressing, packet-filtering etc...
- No routing/meshing built-in
- Just used for simple point-to-point at present

Moteino facilities

- Provides easy IO (just like an Arduino UNO)
- USB programmable
- Nice library provides access to the radio module
- Radio comms is just calling simple functions
- Very quick to get started and generate "cut-and-paste" functionality
- Unregulated frequency (and not in the 2.4GHz band) which is generally very reliable
- Used this on a balloon launch last year and got 2650m using a directional antenna and stock

Adaptive algorithms for controlling data rate and sampling regime

- Use environment feedback to
 - Increase sampling frequency
 - Decrease sampling frequency
 - Prioritise particular sensors
 - Prioritise particular parts of the network
- Use external input in a similar way
 - Human intervention
 - Weather station data
 - Weather forecast

Conclusion

- Building small, low-power, long-lived systems has never been
 - Easier
 - Cheaper
- What they lack in precision/accuracy/ repeatability they can make up for in other ways
- They offer ways to study things that are genuinely novel
 - But also require a bit of a side-step in the way you think
- Communication technologies can be very cheap, especially for low data rates

