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Purpose of the STMS 
 

The presented Short Term Scientific Mission (STSM) is focused on the estimation of 

carbon fluxes in a Mediterranean heterogeneous ecosystem using high spectral and spatial 

resolution airborne data. The main objective of the STSM was the estimation of Sun Induced 

Fluorescence (SIF) from the spectral dataset; only available at a sub-optimal spectral resolution. 

This variable would be later used as a predictor of carbon fluxes -together with other spectral 

vegetation indices-, in different models. Moreover, the high spatial resolution would allow 

taking into account the ecosystem heterogeneity, and evaluate its impact on flux models. 

 

The selected study site is a “dehesa” ecosystem; this is a Mediterranean savanna 

composed by grassland and scattered trees, mainly Quercus ilex. In the site, biospheric fluxes 

are measured using Eddy Covariance method (Baldocchi 2003). An EC tower operates since 

2003 and two additional towers were installed in 2014. Imagery was acquired with the Compact 

Airborne Spectrographic Imager (CASI 1500i) and the Airborne Hyperspectral Scanner (AHS) 

sensors between 2010 and 2014 in the context of the BIOSPEC 

(http://www.lineas.cchs.csic.es/biospec) and the FLUXPEC projects 

(http://www.lineas.cchs.csic.es/fluxpec). Though Gross Primary Production (GPP) and Net 

Ecosystem Exchange (NEE) have been already estimated via remote sensing, the spatial 

heterogeneity of ecosystems is still an issue. Difficulty can increase in areas like the selected 

study site, where vegetation strata with different phenology and physiology can be found 

Therefore, in this STSM we have used high spatial resolution data to take into account this 

heterogeneity and evaluate its impact on carbon flux modeling. 

 

Remote sensing-based models used for the estimation of carbon fluxes typically use 

vegetation indices derived from spectral reflectance, that provide information related with the 

structure, phenology or physiology of vegetation (Gamon et al. 2006). Moreover, in the last 

years, vegetation sun-induced fluorescence has been used in the estimation of carbon fluxes 

(Meroni et al. 2009). This signal provides information about the status of the photosynthetic 

apparatus of vegetation, and might be also related with the fraction of Absorbed 

Photosynthetically Active Radiation (fAPAR) (Rossini et al. 2010). However, SIF is a weak 

signal, and its retrieval is difficult. Though different methods have been described, the spectral 

features of the CASI camera could be suitable for the use of multispectral radiance-based 

methods (Meroni et al. 2009). (Panigada et al. 2014) recently reported the use of the Fraunhofer 

Line Depth Method (FLD) (Maier et al. 2002) to estimate SIF from airborne data and 

discriminate crop fields under different regimens of stress. Therefore, in this STSM we have 

proposed explore the retrieval of SIF using multispectral radiance-based methods with the CASI 

spectral dataset. 

 

Vegetation indices and SIF would be later used to estimate Gross Primary Production 

(GPP) and Net Ecosystem Exchange (NEE) using different models as proposed in (Rossini et al. 

2012). Pure pixels of the different vegetation types -grassland and trees-, would be selected 

within the footprint of the EC towers and used in models together and separately. These models 

would be analyzed to understand the relationships existing between the optical signals of each 

vegetation type and carbon fluxes. 

http://www.lineas.cchs.csic.es/biospec
http://www.lineas.cchs.csic.es/fluxpec
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Description of the work carried out during the STMS 
 

1. PRELIMINARY  PROCESSING  

Prior to the start of the STSM, seven CASI images from the available dataset were 

selected. Sensor radiance and Hemispherical-Directional Reflectance Factor (HDRF) images 

were geocorrected and resampled to 1 m x 1 m pixel using the nearest neighborhood method to 

avoid the spectral mix of different covers during this process.  

 

The location of each eddy 

covariance tower and the 

corresponding footprints selected to 

extract the optical data are shown in 

the Figure 1. The tower “Centre” is the 

oldest, while the towers “North” and 

“South” were installed in 2014, and 

therefore are only used this year. The 

footprints include not only vegetation, 

but also roads and bare soil produced 

by a firebreak and the installation of 

the new towers in 2014 (some of them 

are not noticeable in the RGB image in 

Figure 1). Moreover, on the north of 

the tower “Centre” there are solar 

panels which number has varied 

between the different flight campaigns. 

 

The characteristics and acquisition configuration of the CASI images selected are 

shown in Table 1. All the images were centered over the eddy covariance tower “Center”, but 

the last two last, which correspond to the towers “North” (P03E2) and “South” (P07E2) 

installed in the area in 2014. All the images were acquired binning the spectral bands by 2, but 

the first image acquired in 2010. This image was acquired using the full resolution spectral 

configuration, presenting 288 bands. Therefore, prior to other analyses it was resampled to 144 

bands using the spectral convolution method (Meroni et al. 2010).  

 

Table 1. Features of selected images. 

Date Time Bands FWHM 

(nm) 

SSI 

(nm) 

Image 

Name 

Flight 

Azimuth 

(degrees) 

Solar 

Azimuth 

(degrees) 

18th May 2010 11:27 288 2.4 ~2.40 P11SF 120 170.1 

5th May 2011 10:31 144 5.5 ~4.75 P01E2am 298 127.2 

5th May 2011 14:47 144 5.5 ~4.75 P01E2pm 128 244.1 

4th Oct 2012  11:13 144 4.8 ~4.75 P11E2 181 159.8 

8th Apr 2014  11:47 144 5 ~4.75 P01E2 192.2 162.9 

8th Apr 2014  12:38 144 5 ~4.75 P03E2 75 186.14 

8th Apr 2014  12:55 144 5 ~4.75 P07E2 75 193.61 

 

Figure 1. Study site in Las Majadas del Tietar, Cáceres, Spain. 
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As shown in the table, acquisition configurations and angles respect to the sun are 

different for each image, since the targets of the different campaigns carried out in the site were 

each in each case. Images were selected trying to minimize the differences between the flight 

and the sun angles, however, this was not always possible, and had to be considered in the later 

analyses.  

 

Each image was classified in four different categories: grassland, trees, shadows / water 

and soils/roads using a supervised methodology based on the Mahalanobis Distance method 

(Richards 1999). Training fields were manually selected in each image. Different spectral 

indices were computed and used together with the original HDRF bands in the classification. 

 

2. SUN-INDUCED FLUORESCENCE ESTIMATION 

For the estimation of SIF, two different methods were selected, FLD and its more 

sophisticated version, the 3FLD method. These methods are based on atmospheric variables 

inside and outside a dark line in the irradiance spectrum, most usually the O2-A absorption band 

centered at 760.4 nm. The knowledge of incoming irradiance, transmittance and path radiance 

allow separating the reflected radiance and the fraction corresponding to the fluorescence 

emission (Maier et al. 2002). In the case of the FLD method, a band inside and another outside 

of the absorption band are selected whereas in the 3FLD, the radiance outside is interpolated 

between two bands located at both sides of the dark line. When atmospheric parameters are not 

available, a variable related with SIF can be empirically estimated from the radiances of non-

fluorescent surfaces solving a system where the coefficients estimated are function of these 

atmospheric parameters, as shown in (Panigada et al. 2014).  

 

Since in our case not atmospheric parameters had been retrieved in a pixel basis, non-

fluorescent targets (NFT) were selected in each image in order to use this empirical approach. 

Different selection criteria were tested, proximity to footprint, proximity to nadir or maximize 

the range of radiances. The aim was minimize the differences in the atmospheric parameters of 

these pixels due to spatial variability or observation angle respectively. Pixels were also selected 

within homogeneous areas, in order to minimize adjacency effects due to pollution of the 

fluorescent signal from vegetation contiguous vegetation pixels other issues such as spatial 

cross-talk. We first selected the road and soil pixels found within the footprints; however, these 

offered a short range of radiances which were usually as bright or brighter than vegetation 

pixels, but not darker. Nonetheless, the FLD method (Maier et al. 2002) makes recommendable 

selecting a wide range of non-fluorescent radiances within and outside the atmospheric 

absorption band, in order to minimize the errors in the fit of the coefficients k1 and k2.  

Therefore, selection was manually done afterwards, looking for bright and very dark pixels (like 

water surfaces). 

 

 Radiances of these NFT pixels were extracted from each image and in order to select 

the different bands used in the estimation of SIF. The band “inside” the absorption feature was 

identified as the band with the minimum radiance around 760.4 nm. For the FLD method, the 

band “outside” the O2-A band was the one with the maximum radiance at a shorter wavelength 

than the band “inside” but closer than 12.5 nm. Similarly, a second band “outside” placed at a 

larger wavelength than the “inside” band was selected for the 3FLD method, also closer than 

12.5 nm. For this method, the radiance “outside” was calculated interpolating the radiance of the 

two “outside” bands to the band “inside”. Though different criteria were used to select such 
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targets, the bands selected for the SIF retrieval remained constant. After selecting the bands, 

radiances were used to adjust the corresponding coefficients k1 and k2 for each image solving the 

system described in (1); where 𝐿𝑖𝑛 is the radiance “inside” the O2-A absorption band in the non-

fluorescent pixel and 𝐿𝑜𝑛 is the corresponding radiance “outside” the atmospheric feature. 

 

[

𝐿𝑖1
⋮
𝐿𝑖𝑛

] = [

𝐿𝑜1 1

⋮ ⋮
𝐿𝑜𝑛 1

] [
𝑘1
 𝑘2
] (1) 

 

Afterwards, the coefficients were used to generate “pseudo-fluorescence” (from now on 

called SIF*) using the radiance “inside” and “outside” of the geocorrected images using the 

equation (2). 

 

𝐿𝑓𝑘3 = 𝐿𝑖 − 𝐿𝑜 𝑘1 − 𝑘2 (2) 

 

Then, estimated SIF* and also reflectance factors were extracted from a standard 

footprint described as a 100 m x 200 m rectangle centered in each EC tower and oriented in the 

main wind direction.  

 

The “pseudo-fluorescence” values of the different covers in the footprint were 

compared. As a result, systematic errors and inconsistencies in the values generated were found. 

This led to carry out further analyses and try to correct these estimates. A sensor-column-related 

dependence of the retrievals of florescence was detected. We tried to characterize this effect 

selecting no-fluorescent targets across the sensor columns in the non-geocorrected images 

(L1b); and then adjust a function that predicted the coefficients k1 and k2 as a function of the 

column number. Different automatic methods of target selection were tested, based on the 

radiance and the reflectance of the pixels. Eventually, targets were selected manually in order to 

have a maximum control of the quality of the pixels selected, located into homogeneous areas 

both clear and bright. We used these targets to fit the coefficients k1 and k2 in each image 

column solving (1). Moreover, in order to increase the robustness and range of values used to fit 

the coefficients k1 and k2, available NFT were selected within a 50 columns window. In each 

image, a polynomial was adjusted to predict the value of the coefficients as a function of the 

column number. Moreover, in order to avoid any likely influence of outliers, a weighted fit was 

used. Predicted coefficients were then used to estimate fluorescence in each sensor column; 

these images were later geocorrected. Additionally, we analytically characterized the source of 

the biases found, and the likely effects that this could have on the fluorescence retrievals of 

coefficients k1 and k2. 

 

3. SUN-INDUCED FLUORESCENCE AND REMOTE INFORMATION ANALYSIS. 

MODEL DEFINITION. MODEL CALIBRATION AND ANALYSIS 

Vegetation productivity can be related with optical information as indicators of different 

vegetation variables (Rossini et al. 2012). On one hand, spectral vegetation indices usually are 

related with structural parameters of vegetation and/or with the chlorophyll content. These 

indices relate with GPP since they are linked to the green biomass available to capture radiation 
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photosynthesize (Rossini et al. 2010). In order to estimate GPP and NEE using different models, 

the following indices were calculated: Normalized Difference Vegetation Index (NDVI), 

Renormalized Difference Vegetation Index  (RDVI), Enhanced Vegetation Index (EVI), 

Modified Chlorophyll Absorption Ratio Index 1 (MCARI1), Modified Chlorophyll Absorption 

Ratio Index 2 (MCARI2), Modified Triangular Vegetation Index (MTVI2), Transformed 

Chlorophyll Absorption Ratio Index/Optimized Soil-Adjusted Vegetation Index 

(TCARI/OSAVI), Triangular Vegetation Index (TVI), Red-Edge Chlorophyll Index (CIre), 

Modified Terrestrial Chlorophyll Index (MTCI), and Vogelman Index (VOG). 

 

On the other hand, some spectral indices are related with the Xanthophyll pigments, 

involved the release of excessive radiation via thermal dissipation. The Photochemical 

Reflectance Index (Gamon et al. 1992) and derived versions are usually related to the Light Use 

Efficiency, and therefore with the fraction of the absorbed radiation that is actually used in 

photosynthesis. PRI and PRI515, -reported less dependent of structural parameters (Hernández-

Clemente et al. 2011)- were computed to be included in the GPP/NEE models as LUE 

estimators. SIF* was computed to be used as a LUE estimator since chlorophyll fluorescence is 

itself another mechanism of energy dissipation to prevent photodamage. However, 

inconsistencies in the results found prevented from using SIF* estimates in the models.  

 

Additionally, in some of the models, the Photosynthetic Active Radiation (PAR), 

continuously measured by the Eddy Covariance systems was included in the models. This 

variable and also GPP and NEE were aggregated in the temporal domain, intra and inter-daily. 

This way, flux data representative of different periods of time were compared with the optical 

data, concretely with the spectral vegetation indices indicators computed.  

 

The models described in (Rossini et al. 2012) were selected to predict carbon fluxes are 

numbered from 1 to 5 as follows. VI is a vegetation index related to green biomass; only two 

spectral indices, the PRI and the PRI515 were used as LUE indicators: 

 

Model 1:  𝐺𝑃𝑃 = 𝑎 + 𝑏 · 𝑉𝐼  

Model 2:  𝐺𝑃𝑃 = 𝑎 + 𝑏 · 𝑉𝐼 · 𝑃𝐴𝑅  

Model 3:  𝐺𝑃𝑃 = (𝑎 + 𝑏 · 𝑉𝐼) · 𝑃𝐴𝑅 

Model 4:  𝐺𝑃𝑃 = (𝑎 + 𝑏 · 𝑉𝐼) · (𝑐 + 𝑑 · 𝑃𝑅𝐼) · 𝑃𝐴𝑅 

Model 5:  𝐺𝑃𝑃 = (𝑎 + 𝑏 · 𝑉𝐼) · (𝑐 + 𝑑 · 𝑃𝑅𝐼515) · 𝑃𝐴𝑅 

 

Using meteorological data and the optical information extracted from each cover (trees 

and grassland) within the footprints, the models were adjusted using the non-linear optimization 

method implemented in the MatlabTM function lsqcurvefit. For that we used separately the data 

from the grass cover and the oak cover; afterwards, these spectral data were linearly mixed 

based on the proportion of pixels of each category. Eventually, all the spectral data of all the 

pixels in the footprint, including shadows, water, bare soils, and roads were merged and used to 

fit each models. Models were fit against instantaneous and daily aggregated GPP and NEE. 

Results for each model and for each cover were analyzed. 
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Description of the main results obtained 
 

1. PRELIMINARY WORKS  

Spatial resolution of the images allowed discriminating the different elements in the 

scene: grassland, trees, shadows casted by the trees and non-vegetation covers like bare soils, 

tracks… The fractions of the different cover types in the footprints (one in 2010, 2011 and 2012 

and three in 2014) of each image as classified using the supervised classification method are 

shown in Table 2. Footprints size ranges between 19880 and 20073 pixels. In all the cases, the 

grassland is the predominant category, followed by the trees; and then by tree-shadows and bare 

soils and roads indistinctly. However, the last two categories represent more than the 10% of the 

surface of each footprint. 

 

Table 2. Fraction cover of each classified category in the different footprints. 

Image Grass Trees Shadow Soil and Roads 

100518_P11SF 71.94% 16.83% 4.82% 6.41% 

110505_P01E2am 71.47% 16.53% 6.96% 5.03% 

110505_P01E2pm 67.74% 17.57% 10.40% 4.29% 

121004_P11E2 65.89% 15.04% 14.61% 4.46% 

140408_P01E2 72.56% 17.07% 7.38% 2.99% 

140408_P03E2 67.31% 21.04% 9.15% 2.51% 

140408_P07E2 67.22% 21.86% 10.22% 0.70% 

 

 

 

2. SUN-INDUCED FLUORESCENCE ESTIMATION 

Figure 2 shows radiances corresponding to the NFT outside the footprint and to the 

vegetation types within the footprint. The bands selected for SIF* retrieval are marked with red 

circles. As can be seen, bright and dark NFT were selected attempting to maximize the range of 

radiances. However, radiances of some vegetation pixels are still larger than the highest 

radiances among the NFT in the near infra-red (NIR). 

 

After band selection in each image, SIF* was calculated using both the FLD and 3FLD 

methods. The first analysis done was comparing the estimates of the different covers of each 

image. Moreover, SIF* retrievals were plotted against the radiance values outside the 

atmospheric absorption band (Lo) in order to discard any relationship between both variables. In 

all the cases and for both methods, we found inconsistencies that lead us to question the results. 

In some cases, the NFT within the footprint seemed to emit fluorescence, with magnitudes 

sometimes close to the emission of vegetation targets. This could be partially explained by 

adjacency effects, since these targets do not form large patches within the footprint, but are most 

usually linear features, where this effect can importantly operate. On the contrary, this could not 

justify the cases when this was observed in the NFTs used to estimate the coefficients, as shown 

in Figure 3. As can be observed, both soils and roads within the footprint and also selected 

NFTs outside the footprint show positive values of SIF at sensor radiances between 50 and 100 
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mW/m2 sr nm. This might suggest a non-linear relationship between the radiance inside and 

outside the O2-A band. 

 

 

Figure 2. Sensor radiances around the O2-A band corresponding to the image 140408_P01E2, acquired over the 
“Centre” tower in April 2014. Non-fluorescent targets were used to select the bands inside and outside the 
atmospheric feature. Selected bands are signaled with red circles. Moreover, radiances corresponding to the two 
vegetation types within the footprint are shown on the right; selected bands are also indicated with red circles. 

 

 

 

Figure 3. SIF* estimates in the image 140408_P03E2 acquired in April 2014 using the FLD method. In the left 
graph, grey dots correspond to NFTs selected to adjust the coefficients k1 and k2 out of the footprint; whereas 
brown dots are the soil and road pixels within the footprint of the EC tower. In the center graph, light green 
points correspond to the grass pixels within the footprint, whereas in the right graph, dark green dots correspond 
to SIF* estimates of the tree pixels within the footprint. 
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In other cases, negative values of SIF* were estimated, both in NFTs and in vegetation 

pixels. This might be explained by differences in the atmospheric parameters found in the pixels 

used to fit the coefficients and in those where SIF* was later estimated. For this reason we 

attempted to select pixels close to the footprint and or close to nadir. However, meeting these 

criteria was never possible in all the scenes. Figure 4, shows an example of this case. The image 

corresponds to October, when grass was almost completely dry, and therefore low values of 

SIF* would be expected. However, as can be seen, SIF* values (estimated with the 3FLD 

method) are negative for soils and roads within the footprint and also for the grass pixels within 

the footprint. Results obtained by the FLD method are also negative for soils and roads, but not 

for grassland. Thus, though in some cases, the values estimated for vegetation covers seemed to 

make sense, the values found in pixels where should be no emission led us to question such 

estimates.  

 

 

Figure 4. SIF estimates in the image 121004_P11E2 acquired in October 2012 using the 3FLD method. In the left 
graph, grey dots correspond to NFTs selected to adjust the coefficients k1 and k2 out of the footprint; whereas 
brown dots are the soil and road pixels within the footprint of the EC tower. In the center graph,  light green 
points correspond to the grass pixels within the footprint, whereas in the right graph, dark green dots correspond 
to SIF estimates of the tree pixels within the footprint. 

 

SIF* estimates were calculated from the radiances extracted from pixel images. In order 

to better understand the inconsistencies found, fluorescence maps were generated and 

visualized. SIF* values seemed to gradually increase across-track. We discarded the existence 

of any directional effect checking that this increase was not related with the sun position, which 

suggested that this could be a sensor-related problem. SIF* was computed using the original 

non-geocorrected images, and an increase of values from left to right was found in all the 

images. This could explain some of the problems previously found, since the NFTs selected 

were some times in pixels where the magnitudes of this gradient were significantly different. 

The source of this dependence has not been confirmed, though at this point we suspected that 

stray light effects could be in part the responsible. 
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Figure 5 shows an example of the coefficients fit in the image 121004_P11E2. As in all 

the cases, k1 increased from left to right in the sensor. The trends in k2 were not so much 

consistent, and usually noisy. In fact the magnitude of this noise was important compared with 

the SIF values latter estimated.  

 

 

Figure 5. Coefficients k1 and k2 measured and estimated across-track corresponding to the image 121004_P11E2 
acquired in October 2012. Coefficients are estimated for the 3FLD method. Blue dots correspond to coefficients 
fit using targets selected in a 50 columns moving window and red lines the corresponding predicted values as a 
function of the column number using weighted polynomials. 

 

Coefficients predicted as a function of the column number were used to estimate SIF* 

from the L1b images, these were afterwards geocorrected and pixels in the footprint extracted. 

This method allowed the removal of the column-dependency previously observed. Figure 6 

shows an example of SIF* maps calculated using unique (top) and column dependent 

coefficients (bottom). In the image of the top there is a clear increase of brightness from left to 

right, which disappears in the image of the bottom, where the column-based method is applied. 

This correction enhanced the differences between non-fluorescent targets and vegetation. 

Despite of the fact that the column-dependencies were apparently removed, the magnitude of 

SIF* values were still inconsistent, and negative values still appeared in NFT and soils in some 

of the images. At this point and considering other limitations such as ancillary data available 

and the duration of the STMS among others, the estimation of reliable SIF* should be 

discarded. A latter effort was done to better understand the influence of this sensor-dependence 

effect and in general of any noise in the FLD method. For that, we analytically included a 

spurious radiance in the equations. 
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Figure 6. SIF* maps generated from the L1b image 140408_P03E2 acquired in April 2014, using the FLD method. In 
the top image SIF* is estimated using unique coefficients k1 and k2 obtained from targets selected in the 
geocorrected image. In the bottom image, SIF* is estimated in the non-geocorrected image using coefficients that 
were function of the column number. 

 

We modeled the at-sensor radiance (L) as (Maier et al. 2002), including a spurious 

radiance variable which summarizes any likely source of error, not necessarily known, and 

whose value could be positive or negative, Ls.  

 

𝐿 =  (𝜌𝐸 + 𝐿𝑓)𝑇 + 𝐿𝑝 + 𝐿𝑠 (3) 

 

where E is irradiance, Lf the fluorescence emission, T the atmospheric transmittance and Lp the 

path radiance. From here, we rebuilt equation (2) as follows (see appendix I for a complete 

description): 

 

𝐿𝑓𝑘3 = 𝐿𝑖 − 𝐿𝑜 𝑘1 − (𝑘2 + 𝑘𝑠) =  𝐿𝑖 − 𝐿𝑜 𝑘1
∗ − 𝑘2

∗
 (4) 

 

where i stands for inside the O2-A absorption band and o for outside this band; ks is a coefficient 

that linearly depends on the spurious radiance as k2 depends on Lp (5). Morevoer k1
* and k2

* 

would be the coefficients eventually adjusted using radiances from non-fluorescent targets. 

 

𝑘𝑠 = 𝐿
𝑠
𝑖 − 𝐿

𝑠
𝑜 𝑘1 (5) 

 

We used this model to simulate three different situations, trying to understand when 

would be actually possible retrieving SIF*. The Case 1 is that Ls is 0. The Case 2 is that can be 

accepted that Ls inside and outside the O2-A band is constant for all the targets. Finally the Case 

3 is that Ls inside and outside the O2-A band is different for each target, no matter whether it is 

equal or different inside or outside the band of each target. Figure 7 shows the result of the 

simulation. The blue symbols and line represent Case 1, when there is no spurious radiance and 

the estimated coefficients are equal to real: k1
* = k1 and k2

* = k2. The green symbols and line 
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represent the Case 2, if Ls is equivalent for all the targets and bands, then the offset of the 

regression would be biased, k2
* ≠ k2, but not the slope k1

* = k1. Red circles show Case 3, where 

Ls is different for the each target, none of the estimated coefficients can be equal to the real 

ones. This happens no matter whether this spurious signal is equivalent inside and outside the 

O2-A band. The only exception would occur when for all the targets, the ratio Li
s / Lo

s = k1. In 

that case, the coefficients estimated would be the same that the real ones since ks would cancel 

out as shown in equation (5). Case 3 might also produce a non-linear relationship between the 

radiances inside and outside the absorption feature, if Ls was related to Li or/and Lo; which 

would make the SIF* estimates dependent on the radiance of the NFT selected for the retrieval 

of k1 and k2, and also inconsistencies in the retrieval of SIF*. 

 

 

Figure 7. Simulation of the retrieval of coefficients k1 and k2 under different types of Ls.  

 

Since in all the cases the coefficient k1 showed a dependence on the column number, we 

deduced that, in our imagery, spurious radiance was different or lead to an effect of different 

magnitude also for the different bright and dark NFT selected to adjust the coefficients. Thought 

we originally suspected that stray-light might be responsible of the dependencies found in the 

SIF* images, it would likely produced a Case 2 situation (same Ls for bright and dark targets, 

but different in each column). However, in this case, it is the difference between Ls of bright and 

dark targets what seems to be changing across-sensor. A deeper analysis of the sources of this 

effect and their mechanisms is out of the scope of this STMS. Moreover, it must be considered 

that also other factors might operate simultaneously, like differences in the atmospheric 

parameters within the image that were not characterized; instrumental dependencies related with 

the radiance level of the targets, such as spectral cross-talk or non-linearities or directional 

effects; spectral shifts and changes in the spectral resolution across-track; or directional effects 

among others. A robust analysis of the impact of this spurious radiance on the retrieval of SIF* 

would be also out of reach of this STMS. However, a preliminary analysis suggested that this 

could lead also to negative values and explain some of the inconsistencies found, preventing 

from using these estimates in a multi-temporal or a multi-image analysis. 
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3. SUN-INDUCED FLUORESCENCE AND REMOTE INFORMATION ANALYSIS. 

MODEL DEFINITION. MODEL CALIBRATION AND ANALYSIS 

 

Figure 8 summarizes some of the spectral and flux data available for the modeling.  

 

 

Figure 8. Summary of spectral and eddy covariance datasets available for modeling. On the top graph, ground and 
airborne derived NDVI, squares stand for grassland and circles for trees. In the middle graph the plot shows, SIF* 
estimates using both FLD and 3FLD methods. In the bottom graph, daily mean GPP of each tower and year are 
plotted. 

 

The top graph in figure 8 allows comparing the NDVI calculated from the airborne 

imagery with ground spectral measurements over grass plots acquired with an ASD Fieldspec® 

3 during the field campaigns supported by BIOSPEC and FLUXPEC projects. High agreement 

can be observed between ground and airborne measurements. In the middle plot in figure 8, the 

last estimates of SIF* using both FLD and 3FLD methods are shown. Some trends can be seen, 

somehow related with carbon fluxes. However, as discussed in the previous section, these 

estimates might be modified by instrumental effects, and would not be used in the modeling. 

The bottom graph in figure 8 shows the daily mean GPP. As can be seen, there are some 

significant differences between years.  

S
IF

* 
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As previously mentioned, a set of spectral indices were calculated from the spectral 

reflectance extracted from the classified footprints. Averages for each cover were calculated, 

and the relationships existing among them for both, grass and trees, was investigated. Figure 9 

shows the indices scatterplot matrix corresponding to grass pixels. As can be seen, most of the 

indices are highly correlated among them except for the MTCI and the PRI and PRI515 indices. 

 

 

Figure 9. Scatter plots matrix between the different spectral indices obtained from grass pixels reflectance. 

 

In the case of the indices calculated from tree pixels (Figure 10), high correlation values 

are not so frequently found. Some indices such as MCARI1, TCARI, TCARI/OSAVI… show 

almost no correlation with the rest of the indices. In these cases, PRI indices did not show clear 

relationship with any other indices.  
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Figure 10. Scatter plots matrix between the different spectral indices obtained from tree pixels reflectance. 

 

Using meteorological data and the optical information extracted from instantaneous and 

daily averaged GPP and NEE were used to adjust models that predicted carbon fluxes as a 

function of spectral indices and/or Photosynthetically Active Radiation measured in the EC 

towers. Models were adjusted using spectral indices corresponding to a) grass pixels, b) trees, c) 

a mix of both layers weighted by their frequency within the footprint, and d) all the pixels 

within the footprint. 

 

Table 3 summarizes the regression coefficients of the different models adjusted using 

spectral indices calculated from grass pixels and instantaneous GPP. In this case, the maximum 

correlation coefficient (r2 = 0.85) corresponded to the Model 4 that included the TCARI/OSAVI 

and the PRI. Similarly, table 4 shows r2 corresponding to models adjusted using spectral indices 

of tree pixels. In this case, the maximum coefficient was lower (r2 = 0.64) and it was found in 

the Model 5 which mixed OSAVI and PRI515.  
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Table 3. Correlation coefficient r2 corresponding to different models that combine grass vegetation indices and 
instantaneous GPP. 

 
Model 1 Model 2 Model 3 Model 4  Model 5  

NDVI 0.55 0.64 0.63 0.79 0.65 

RDVI 0.63 0.60 0.60 0.65 0.59 

EVI 0.62 0.56 0.56 0.82 0.57 

MCARI1 0.65 0.60 0.57 0.80 0.58 

MCARI2 0.63 0.61 0.59 0.82 0.57 

MTVI2 0.63 0.61 0.59 0.82 0.57 

TCARI 0.57 0.60 0.59 0.84 0.61 

OSAVI 0.61 0.62 0.61 0.81 0.62 

TCARI/OSAVI 0.49 0.56 0.58 0.85 0.59 

TVI 0.64 0.60 0.58 0.64 0.60 

CIre 0.67 0.65 0.64 0.74 0.58 

MTCI 0.57 0.52 0.53 0.54 0.64 

VOG 0.63 0.55 0.61 0.85 0.61 

 

 

Table 4. Correlation coefficient r2 corresponding to different models that combine oak vegetation indices and 
instantaneous GPP. 

 
Model 1 Model 2 Model 3 Model 4  Model 5  

NDVI 0.12 0.45 0.46 0.43 0.64 

RDVI 0.09 0.37 0.50 0.50 0.56 

EVI 0.00 0.28 0.55 0.51 0.63 

MCARI1 0.06 0.30 0.50 0.49 0.56 

MCARI2 0.12 0.34 0.49 0.50 0.55 

MTVI2 0.12 0.34 0.49 0.50 0.55 

TCARI 0.26 0.44 0.49 0.51 0.62 

OSAVI 0.14 0.40 0.49 0.35 0.64 

TCARI/OSAVI 0.21 0.46 0.51 0.54 0.62 

TVI 0.07 0.31 0.48 0.48 0.63 

CIre 0.02 0.17 0.56 0.60 0.63 

MTCI 0.21 0.07 0.61 0.61 0.62 

VOG 0.03 0.36 0.55 0.58 0.63 

 

 

Eventually, table 5 shows the same results when the models were adjusted using all the 

pixels in the footprints, including shadows and bare soils.  The mix of different covers reduced 

the maximum r2 to 0.80 which corresponds to Model 4 using TCARI. 
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Table 5. Correlation coefficient r2 corresponding to different models that combine vegetation indices of all the 
pixels within the footprint and instantaneous GPP. 

 
Model 1 Model 2 Model 3 Model 4  Model 5  

NDVI 0.50 0.62 0.62 0.75 0.63 

RDVI 0.66 0.61 0.61 0.79 0.61 

EVI 0.64 0.56 0.56 0.60 0.61 

MCARI1 0.68 0.61 0.59 0.77 0.61 

MCARI2 0.66 0.61 0.60 0.78 0.61 

MTVI2 0.66 0.61 0.60 0.78 0.61 

TCARI 0.63 0.64 0.63 0.80 0.62 

OSAVI 0.63 0.62 0.62 0.79 0.62 

TCARI/OSAVI 0.58 0.62 0.66 0.65 0.72 

TVI 0.67 0.61 0.59 0.78 0.61 

CIre 0.58 0.58 0.58 0.75 0.62 

MTCI 0.13 0.39 0.48 0.47 0.61 

VOG 0.53 0.52 0.55 0.56 0.61 

 

Conclusions 
 

High spatial resolution airborne imagery has allowed overcoming spatial heterogeneity 

in a savanna ecosystem, separating optical signals of different covers within the areas of 

influence of the EC towers.  

 

Multiband radiance-based methods to retrieve SIF have, like FLD and 3FLD have not 

success to provide reliable estimates. An across-track-related effect has been observed, and we 

have tried to characterize it. Though we removed the across-track effect, some inconsistencies 

in the results remained, and at that point the retrieval of reliable SIF estimates was discarded.  

 

Preliminary analysis of a theoretical source of error in the retrieval of SIF* provided 

some information about the characteristics of the instrumental effect. However, a much deeper 

study, out of the scope of this STMS, would be needed to properly characterize this 

phenomenon. 

 

Despite of not being possible include SIF, the flux modeling done is still interesting in 

the context of the COST Action Optimise, since spatial issues can still be addressed. 

Future collaborations with the host institution 
 

Despite of not being able to produce reliable estimates of SIF*, the works started would 

keep on. On view of the results we have redefined the scientific aims, and we are currently 

analyzing spatio-temporal issues related with the modelling of carbon fluxes using spectral 

indices derived from the CASI images. Additional collaborations would take place in frame of 

field campaigns shared by both groups, Milano Biccoca and SpecLab, in the selected site of this 

work, Majadas del Tiétar.  
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Foreseen publications/articles resulting from the STMS 
 

Analysis carried out might lead to results interesting enough to worth a publication. 

Though some data should still be generated, the analyses are already planned and some trials 

with preliminary data are promising. We expect to be able to publish the definitive results 

contributing to a better understanding of the connection between fluxes and high resolution 

airborne optical data. This work could be of interest in the context of the use UAV in these type 

of applications, which is one of the issues addressed by the Cost Action OPTIMISE. 
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Appendix I. Inclusion of spurious radiance in the Maier equations 
 

From (Maier et al. 2002) we can define the radiance measured by a sensor inside (Li) 

and outside (Lo) an atmospheric dark line as follows:  

 

{
𝐿𝑖 = (𝜌𝑖𝐸𝑖 + 𝐿𝑖

𝑓
)𝑇𝑖 + 𝐿𝑖

𝑝
+ 𝐿𝑖

𝑠

𝐿𝑜 = (𝜌𝑜𝐸𝑜 + 𝐿𝑜
𝑓
)𝑇𝑜 + 𝐿𝑜

𝑝
+ 𝐿𝑜

𝑠
 (A1) 

 

where i stands for inside the absorption feature and o for outside, ρ is the reflectance factor, E is 

the irradiance, Lf is radiance emission of fluorescence, T is the transmittance, Lp is the path 

radiance and Ls is the spurious radiance, a variable that summarize any source of well of 

radiance due to instrumental effects or others. Ls can be positive or negative, and does not need 

to be known. 
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If we assume that ρi = ρo = ρ and that Lf
 i = Lf

 o = Lf then we can deduce that: 

 

{
 
 

 
 𝜌 =  

1

𝐸𝑖
(
𝐿𝑖 − 𝐿𝑖

𝑝
− 𝐿𝑖

𝑠

𝑇𝑖
− 𝐿𝑓) =  

1

𝐸𝑜
(
𝐿𝑜 − 𝐿𝑜

𝑝
− 𝐿𝑜

𝑠

𝑇𝑜
− 𝐿𝑓)

𝐿𝑓 = 
𝐿𝑖 − 𝐿𝑖

𝑝
− 𝐿𝑖

𝑠

𝑇𝑖
− 𝜌𝐸𝑖 =

𝐿𝑜 − 𝐿𝑜
𝑝
− 𝐿𝑜

𝑠

𝑇𝑜
− 𝜌𝐸𝑜

 (A2) 

 

 

Substituting Lf or ρ in A2: 

 

𝐿𝑓 = 
𝐿𝑖 − 𝐿𝑖

𝑝
− 𝐿𝑖

𝑠

𝑇𝑖
−
1

𝐸𝑜
(
𝐿𝑜 − 𝐿𝑜

𝑝
− 𝐿𝑜

𝑠

𝑇𝑜
− 𝐿𝑓)𝐸𝑖 (A3) 

 

𝐿𝑓𝑇𝑖 (1 −
𝐸𝑖
𝐸𝑜
) =  𝐿𝑖 − 𝑘1𝐿𝑜 − (𝐿𝑖

𝑝
− 𝑘1𝐿𝑜

𝑝
) − (𝐿𝑖

𝑠 − 𝑘1𝐿𝑜
𝑠 ) (A4) 

 

𝐿𝑓𝑘3 = 𝐿𝑖 − 𝑘1𝐿𝑜 − 𝑘2 − 𝑘𝑠 = 𝐿𝑖 − 𝑘1
∗𝐿𝑜 − 𝑘2

∗
 (A5) 

 

where k1
* and k2

* would be the coefficients eventually adjusted using radiances from non-

fluorescent targets and k2
* is  

 

𝑘2
∗ = 𝑘2 + 𝑘𝑠 (A6) 

 

and ks represents an offset introduced by the spurious radiance, in fact it, as can be deduced 

from (A5), ks linearly depends on Ls similarly as k2 depends on Lp: 

 

𝑘𝑠 = 𝐿
𝑠
𝑖 − 𝐿

𝑠
𝑜 𝑘1 (A7) 
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