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1. PURPOSE OF THE STSM 
The STSM’s overarching aim was to contribute to the integration of data on spectral reflectance with data on 

ecosystem productivity across temporal scales, bycombining ground, tower and satellite measurements. The training 

opportunity thus aimed at exploring the links between remotely sensed data (such as the NDVI, EVI, LAI, FPAR, 

fluorescence) and gross primary production retrieved at several FLUXNET eddy covariance (EC) sites (D. Baldocchi, 

2008; D. D. Baldocchi, 2003) at different temporal scales, from seasonal to interannual variability. The current 

research focused strongly on a Canadian post-fire chronosequence which builds on the proposed goals by integrating 

a longer term component to the analysis, but spatially circumscribed to the set of six EC sites. Such chronosequences 

allows further investigation of the impacts of stand replacement fire disturbances on the vegetation recovery and 

consequent responses in the ecosystem carbon fluxes. These goals provide strong links between OPTIMISE, and the 

candidate’s PhD study, as well as to the EU-FP7 project CASCADE and the national project FIRE-C-BUDs, which 

aim at investigating vegetation and ecosystem recovery dynamics in Mediterranean ecosystems that are highly fire-

prone. 

2. DESCRIPTION OF THE WORK CARRIED OUT DURING THE STSM 

 

2.1 RESEARCH QUESTIONS 
The STSM addressed the following research questions 

a) Which remotely sensed based vegetation indexes relate best to GPP (gross primary production) estimates at 

different time scales (annual, seasonal, monthly)? 

b) Which methods and techniques for treatment of VIs time series are best suited to analyze the links between 

Vis with GPP? 

c) How do the different VIs translate the post-fire recovery dynamics? Which VIs are more linked to the long 

term recovery C-fluxes?  

2.2 DATA 
 

2.2.1 TOWER DATA 

Several sites in Canada with freely-available EC tower data were selected to obtain a chronosequence of time-since-

fire (Table 1) (Goulden et al., 2006). For each of the towers, the data on GPP, radiation, vapor pressure deficit, 

temperature daily data were retrieved when available, over a roughly 15 year period, starting at the beginning of 2000 

and ending at the beginning of 2015. As an example, GPP data for the CA-NS2 site roughly cover a three year period: 

2001, 2002, 2003. 

TABLE 1 - RESEARCHED FLUXNET TOWERS 

Tower code Location Vegetation IGBP Time-since-fire 

(years) 

CA-NS2 Canada Evergreen Needleleaf Forests 87 

CA-NS3 Canada Evergreen Needleleaf Forests 53 

CA-NS4 Canada Evergreen Needleleaf Forests 53 

CA-NS5 Canada Evergreen Needleleaf Forests 36 

CA-NS6 Canada Evergreen Needleleaf Forests 28 

CA-NS7 Canada Evergreen Needleleaf Forests 19 
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The chronosequence presented was used for methodological and conceptual purposes, specially relating to research 

question c). The consequential chronosequence analysis can further be extended in the near future to other 

chronosequence sites 

2.2.2 SATELLITE DATA 

Over that same time period (2000 to 2015), several VIs (vegetation indexes) from MODIS  (FPAR, LAI, NDVI, EVI) 

and GOME-2 (fluorescence) remote sensing products were retrieved for all tower locations: 

 FPAR (Fraction of Photosynthetically Active Radiation,) 8 day composite, 1 Km product (Knyazikhin, 

Martonchik, Diner, et al., 1998; Knyazikhin, Martonchik, Myneni, Diner, & Running, 1998) 

 LAI (Leaf Area Index,) 8 day composite, 1 Km product (Knyazikhin, Martonchik, Diner, et al., 1998; 

Knyazikhin, Martonchik, Myneni, et al., 1998) 

 NDVI (Normalized Difference Vegetation Index), 16 day composite, 250 m product (Huete, 1997; Huete et 

al., 2002; Justice et al., 2002; Rouse, Hass, Schell, & Deering, 1974) 

 EVI (Enhanced Vegetation Index), 16 day composite, 250 m product  (Huete et al., 2002; Justice et al., 2002) 

 GOME-2 fluorescence monthly,0.5º product (Joiner et al., 2013) 

 

Unfortunately, GOME-2 fluorescence data could not be included in the posterior analysis as they do not overlap 

in time with the GPP data sets. GOME-2 fluorescence data might be used for future research with other sites, where 

convenient.   

2.3 STATISTICAL ANALYSIS 
For each of the MODIS VIs – FPAR, LAI, EVI and NDVI – the original time series was retrieved and then processed 

using various methods designed to gapfill and correct for underestimation biases the original series, listed in Table 2. 

This resulted in 26 data sets for each of the four MODIS variables, one of which being the original time series. At 

first, all VIs subjected to the different treatments were cross-compared between them, resulting in a 108x 

108correlation matrix. 

Further, correlation analysis supported the comparisons between the sites’ remote sensing VIs at different temporal 

aggregation and the EC GPP retrievals. This was done over several temporal aggregations, namely annual, seasonal 

(spring, summer, autumn, winter) and monthly (each of the twelve months). Data retrieved from the towers was 

subjected to quality control filter, only considering: (i) daily values resulting from half hourly aggregations comprising 

more that 80% of good or very good quality records quality above 0.8; and (ii) when data availability covered at least 

75% of the total aggregation period. This assured that data was of good quality and that there were enough valid 

records to be representative of a specific temporal aggregation. 

The temporal aggregations for the MODIS and EC data sets considered three different metrics: the mean and the 50 

and 90 percentiles. Overall, 324 MODIS based time series (4 VIs x 28 methods x 3 aggregation metrics) were 

compared with each of the three GPP aggregations at an annual, seasonal as well as monthly time scale. 
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TABLE 2 - METHODS AND BRIEF DESCRIPTION 

Methods Description 
Original Original time series (may contain data with poor quality) 

fitAG, fitDL, fitSG, fitMD 

 

time series fit of timesat (Chen et al., 2004; Jönsson & Eklundh, 

2004) 

 

corAG,corDL, corSG, corMD 

 
time series correction with timesat (Chen et al., 2004; Jönsson & 

Eklundh, 2004) 

 

corFFT1,corFFT2, corBISE1,corBISE2 

 
fast fourier transformation (approximation) 

(Carvalhais et al., 2008; Sellers et al., 1996; Viovy, Arino, & 

Belward, 1992) 

corFFT1_spatialgapsMean, corFFT2_spatialgapsMean, 

corBISE1_spatialgapsMean, corBISE2_spatialgapsMean 

 

corrected with mean of the gap filled neighbors 

 

corFFT1_spatialgaps, corFFT2_spatialgaps, corBISE1_spatialgaps, 

corBISE2_spatialgaps 

 

corrected with time series of the gap filled neighbors that are best 

correlated with the center pixel 
 

MSC, Reg, RegMSC 

 

correct with mean seasonal cycle, best correlated neighbors and 

both 

 

ens_P50, ens_AVG ensemble P50 and average of all methods above 

 

 

 

3. DESCRIPTION OF THE MAIN RESULTS OBTAINED 
 

3.1 REMOTELY SENSED VIS FOR GROSS PRIMARY PRODUCTION AT DIFFERENT 

TIME-SCALES (RESEARCH QUESTIONS A AND B ) 
The correlation matrix of all the VI-methods against the same VI-methods (order is FPAR,  LAI,  EVI, NDVI) of the 

CA-NS3 MODIS data  is shown in Figure 1, suggesting basically that the FPAR, LAI and NDVI are generally more 

closely-related than with the EVI. The low correlation between EVI was observed at all sites in this 

chronosequences, which was very unexpected given the relationship between NDVI and EVI (e.g.Huete et al., 

2002). A further investigation revealed that the EVI data time series for the Canadian sites was contaminated with a 

high level of noise (annex A Figure 12). In annex B, Figure  13 , we have added a correlation matrix from another 

EC site (PT-Mi1 Portugal, Évora) in which the EVI appears to have the expected seasonal behavior. However, for 

this chronosequences sites we found no reason behind this abnormal behavior in EVI, but since it did not portrait the 

typical Canadian vegetation seasonality, we removed the EVI from any posterior analysis in this exercise. 

Additionally there is a clear pattern that reflect that the NDVI in general compared both to LAI and FPAR, but that 

for the LAI-FPAR relationship some methods correlate worst (CorFFT2, corFFT_spacialgapsMean, 

corFFT2_spatialgapsMean, corFFT1_spatialgaps, corFFT2_spatialgaps). The best correlations across VI’s (except 

EVI) were found for REgMSC, MSC, Reg. 



   

FIGURE 1 - CORRELATION MATRIX OF VI-METHODS AGAINST VI-METHODS



The different aggregation methods (mean, P50 and P90) and VIs time series were then analyzed for the Canadian 

sites and correlated with EC GPP. This resulted in 17 different correlation matrixes (1 annual, 4 seasonal and 12 

monthly) of 3 (mean, P50, P90 - GPP) x 324 proxies (mean, P50, P90 – VI-methods). Correlations were done from 

all sites and all times available, so that they include not only temporal but also spatial variation. An illustration of 

annual correlations is shown in Figure 2.  

 

FIGURE 2-ANNUAL CORRELATIONS FOR EACH PROXY 

Figure 2 shows that mean and P50 GPP estimates tend to correlate better with mean and P50 proxies than P90 GPP 

estimates. The figure also shows an area of strongly negative (not expected correlations) which are related to the noisy 

EVI (which results should not be considered). Similar figures can be devised for seasonal and monthly correlations. 

Nevertheless, from inspection of the correlation matrix, strong correlations were found in spring and April/May 

(Figure 3, 4 and 5). Despite the fact that peak plant growth occurs mainly in the summer period in these sites, the 

finding that May proxies might be used to estimate annual GPP mean or P50 values suggests that the inter annual 

variability (IAV) in GPP is strongly linked to the beginning of the growing season. Another hypothesis, that was not 

tested, is that IAV is mostly controlled by the length of growing season, which would be varying according to the 

beginning of the growing season if end of season dates would not change substantially. 
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FIGURE 3 - SPRING CORRELATIONS FOR EACH PROXY 

 

 

FIGURE 4 - APRIL CORRELATIONS FOR EACH PROXY 

 

FIGURE 5 - MAY CORRELATIONS FOR EACH PROXY 
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Concluding:  

(i)Figures 2, 3, 4 and 5 clearly exhibit a different EVI pattern (proxies 163-243) consistent to a poor signal quality. 

This reinforces the choice to remove the EVI from the analysis; 

(ii) Apparently FPAR (proxies 1-81) and LAI (proxies 82-162) are more robust to act as proxies for GPP. Additionally, 

given the stable values of high correlations within this proxies zones, that might be more important than the method 

of correction used. This will be further tested with an Anova (see section 4); 

(iii) Knowledge of spring VI is very important for understanding interannual variability. 

 

3.2 RECOVERY DYNAMICS (RESEARCH QUESTION C ) 
 

Towards the fire chronosequence analysis, several approaches were tested being that FPAR against stand age (in 

relation to their last fire disturbance) provided an interesting insight that is presented on figure 6.  

 

 

 

FIGURE 6 - FPAR (MEAN ANNUAL ORIGINAL VALUES) VS AGE OF STANDS 
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This result could be interpreted as that the fraction of photosynthetic absorbed radiation at the sites increases 

approximately linearly with time up to 30 years reaching an FPAR of 0.45, after which it tends to moderately increase 

up to a maximum of 0.5, as the age of the site is getting older. This presents an interesting overview of vegetation 

recovery, as that CA-NS6 and CA-NS7 sites are still represented by young forest stages, so we can possibly see an 

evolution to mature forest environments. This relation becomes also evident with the LAI (figure 7).  

 

FIGURE 7 - LAI (MEAN ANNUAL ORIGINAL VALUES) VS STAND AGE 

 

Mean annual LAI recovery trajectory reflects that the forest have reach the coverage at maturity around 20-30 years 

after disturbance (Chasmer et al., 2008), only modestly increasing up to 90 years. However, a different type of result 

is shown in Figure 8, where the temporal aggregation used was the LAI annual percentile 90 instead of the 

mean.  
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FIGURE 8 - LAI (P90 ANNUAL ORIGINAL VALUES) VS STAND AGE 

Figure 8 shows that the peak leaf area coverage occurs around 20 to 30 years being that as the forest matures 

the leaf coverage stabilizes and slightly diminishes. However, this reduction in LAI above 30 years is not obvious 

in the mean LAI values (Figure 7).  Serbin (2013) concluded that  “MODIS LAI and FPAR products 

overestimated and underestimated the LAI and FPAR for the youngest and oldest sites, respectively”, which 

could suggest a stronger difference in LAI and FPAR between young and older sites and also could explain the 

later successional reductions in LAI seen in figures 7 and 8. 

When the NDVI is plotted against stand age a different type of result is presented (figure 9). 
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FIGURE 9 - NDVI(MEAN ANNUAL ORIGINAL VALUES) VS STAND AGE 

Although the general pattern is similar to the above FPAR and LAI patterns, there are two key differences that are 

worth mentioning: 1) a reduction in NDVI around 20 years and 2) also a lower NDVI at maturity (80 years) compared 

to NDVI at 40-50 years old stands. It is difficult to realize whether these results reflect an age-related decline in CA-

NS6, or just a site level difference; and whether the reduction of NDVI in CA-NS2 reflects a maturity signal that is 

unseen by FPAR or LAI, a local bias in the retrieval algorithm, or a true age-related decline. 
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3.2.1 AGE RELATED CHANGES IN GPP FLUXES 
 

How does Stand age affects the GPP flux? Figure 10 shows the mean annual GPP for the Canadian sites in relation 

to the stand age. 

 

FIGURE 10 - GPP VS STAND AGE 

There seems to be a relation between GPP with age, shown in Figure 10, but more noise given inter annual variability 

in other environmental variables (temperature, precipitation), although the upper envelope of GPP seems to follow a 

stand-driven pattern with a higher GPP in most cases between 20 and 40 years of age, followed by a decline and 

stability towards the mature 70-80 years old forest. This needs to be confirmed with further research (see section 4).  

An interesting question arises from the age related changes in GPP and FPAR: whether it is observable an age-related 

change in ecosystem LUE (light use efficiency)  (equation 1)? For that mean annual values where compared and 

plotted (figure 11).  

𝐿𝑈𝐸 =
𝐺𝑃𝑃

𝐹𝑃𝐴𝑅 ∗ 𝑅𝑎𝑑
       (1) 

Where GPP is gross primary production, FPAR is fraction of photosynthetic absorbed radiation and Rad is on radiation 

intensity. 
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FIGURE 11 -LUE (UMOL/W) VS AGE OF STANDS 

Figure 11 shows no  obvious relation between LUE and stand age. Hypothetically, there seems to be a pattern in the 

upper values per site, and maximum LUE could be dependent on age but less optimal temperature and/or water 

availability conditions would impose the departures from the maximum realizable GPP(see Chasmer et al., 2008).This 

is something that would be worth further research, and will be discussed in the following section. 

4. FUTURE COLLABORATION WITH THE HOST INSTITUTION 
Future collaboration with the host institution is foreseen on two papers that the applicant is/will be working on for his 

PhD thesis at the University of Aveiro. The first concerns vegetation recovery following single vs. recurrent wildfires 

in maritime pine stands in north-central Portugal and, in particular, the presence of early warning signs of fire-induced 

tipping-points, with the MODIS-based vegetation proxies applied during this STSM being complementary to the TM- 

and UAV-based vegetation proxies that were originally foreseen. The second concerns the flux tower measurements 

foreseen in the FIRE-C-BUDs project during the initial stage of post-fire ecosystem recovery, providing monthly and 

seasonal estimates of GPP that could be used to validate the relationships with MODIS-based vegetation proxies 

suggested by the results of this STSM.  Consequently, this work will have to be continued even after the completion 

of the STSM period. The next step is to carry out an n-way ANOVA where several factors will be statistically tested 

for their relevance in the correlations of the VI-method proxies with the GPP. Additionally, including more 

chronosequences will allow to confirm results and/or propose new hypothesis to age related VI-developments and 

links to GPP fluxes. 
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5. FORESEEN PUBLICATIONS/ARTICLES RESULTING FROM THE STSM  
While the results obtained during this STSM are only preliminary, given the short duration of the STSM and the 

somewhat limited background of the applicant in the methodologies that were applied during the STSM, they are 

sufficiently promising to justify further work, with the final objective to report them in an international peer-reviewed 

journal. Since such a publication could be integrated in the applicant’s PhD thesis, he is committed to further the work 

after the end of the STSM and has, in fact, carried on the work after his return to the sending institution.   
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Apendix A 

 

FIGURE 12- EVI TIME SERIES AT CA-NS  
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Apendix B 

 

 

FIGURE 13 - CORRELATIO MATRIX OF PT-MI1 PORTUGAL, ÉVORA 


