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Purpose of the STSM 

The main purpose of the STSM of Dr. Sarah Asam at the Laboratory of Image Processing (IPL) at 
the University of Valencia was to get to know in depth the Automated Radiative Transfer Models 
Operator (ARTMO) software, and to use it for biophysical parameter derivation from remote and 
proximal sensing data. Since Ms. Asam has already worked on the derivation of grassland Leaf 
Area Index (LAI) from high spatial resolution optical remote sensing data using a radiation 
transfer model (RTM) during her PhD, her current task within the MONALISA project 
(www.monalisa-project.eu) comprehends the derivation of biophysical parameters for different 
biomes on different scales, and hence from different earth observation data. Therefore, different 
RTMs and a range of inversion optimization approaches need to be tested. The ARTMO software 
is a valuable tool for this kind of analysis, as different models, inversion algorithms, and sensor 
characteristics can be quickly set up. 
 
Work carried out during the STSM 

After installing the latest ARTMO version and creating the necessary training data files and 
satellite imagery formats, Ms. Asam used the ARTMO toolbox in a first step on multispectral 
RapidEye data to carry out a range of analysis: 

- The results achieved with different leaf models, namely the PROSPECT-4 and PROSPECT-5 
models, were compared first.  

- The parameterization of the RTM adapted to the grassland biome was set up based on field 
measurements carried out in the Ammer catchment in 2011/2012 and refined based on the 
spectral match between the RTM output and the remotely sensed reflectances. Since the 
ARTMO toolbox does not allow for pixel-wise selection of Look-up tables (LUT) entries based 
on specific illumination and viewing angles, the specification of the sensor and sun zenith 
angles as well as the relative azimuth angle included all occurring local angles of the scene 
during the forward modeling as well as during model inversion.  

- Different sampling distributions of the input parameters in the range of predefined boundary 
values, namely uniform, normal, exponential, and ‘fullRandom’ distributions, were tested. 

- The influence of the LUT size on the LAI retrieval accuracy was systematically tested within the 
range of 5000 to 180000 LUT entries. 

- For the inversion of the differently generated LUTs, a range of optimization techniques was 
systemically tested each time: 

• the use of multiple solutions 
• the addition of different levels of synthetic noise 
• the use of 15 different cost function out of 3 mathematical groups 
• the usage of normalization/non-normalization within the cost function 
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ARTMO iteratively uses all cost functions, noise levels and multiple solution samples selected 
by the user and automatically identifies the best performing setting. 

After identifying the preferable settings, an LAI map as well as inversion statistic layers (inversion 
residuals and the standard deviation and coefficient of variation of LAI estimates in a multiple 
solution) were derived based on the RapidEye image. Then, the same optimization was 
performed for the use of an airborne hyperspectral data set (HySpex). Firstly, a LUT covering the 
336 spectral bands of the HySpex sensor was generated based on the optimal LUT size identified 
before and based on a similar parameterization (only difference: a varying leaf water content 
parameter). To optimize the model parameterization for the HySpex data, soil spectra sampled 
from the HySpex image were additionally used as input parameter. An LAI map was then derived 
from the HySpex data based on the best performing inversion settings. Additional to the LAI 
information, the inversion statistics as well as the local geometry angles were derived. Also, the 
influence of using only a subset of all HySpex features for inversion has been tested. 

In a last step, the results generated with the RTM and LUT-based inversion approach were 
compared to those generated with a range of 13 non-parametric machine learning regression 
algorithms (MLRA). In the special case of using Gaussian processes, associated uncertainty 
estimates, expressed as the standard deviation or the coefficient of variation, can be mapped 
and relative band importance can be derived, which is useful for further feature reduction. As for 
the LUT approaches, ARTMO enables a systematic trial of different noise settings and 
training/validation partitioning for the training of the MLRAs. Due to the low number of field 
measurements, a 5-fold cross-validation was chosen. After MLRA-inversion was applied to the 
complete data set, a range of automatic feature selection procedures (standard principle 
component analysis as well as transformations used in the yet unpublished SIMFEAT module) as 
well as the simulation of sensor-specific settings that include a lower number of bands (RapidEye, 
Landsat, Sentinel-2) was tested. 

 

Main results 

- LAI maps were be derived based on multispectral as well as hyperspectral data with a lowest 
normalized RMSE of 14 – 18 % given different inversion settings, using both physical as well 
as statistical machine learning techniques. For most maps, an uncertainty estimate layer could 
be generated in addition. 

- The comparison of PROSPECT4 and PROSPECT5 revealed no significant differences for LAI 
derivation accuracy (lowest achieved LAI derivation RMSEs of 14.66 and 14.91, respectively). 
Therefore, the PROSPECT 4 was selected for further use since it has fewer parameters. 

- The ‘fullRandom’ sampling of model input parameters implemented in the ARTMO toolbox, 
that generates parameter combinations based on continuous sampling and random matching 
of the different parameters, achieved best results (see Figure 1). In addition, with this option 
continuous LAI values are stored in the LUT, which enables the derivation of continuous LAI 
values during inversion of the LUT. 

- Overall, using a non-normalized distance measure achieves higher accuracies in most 
inversion settings (see Figure 1 and Figure 2). 
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- The analysis of the influence of the LUT size on the retrieval accuracy revealed that a reduction 
of the LUT size down to 10000 entries does not afflict the mapping accuracy significantly (see 
Figure 2 and Figure 3). This is a relevant finding since LAI mapping based on a LUT inversion is 
speed up a lot when using smaller LUTs. 

- The selection of the cost function has a bigger influence on the inversion accuracy than the 
number of LUT entries (see Figure 3). A range of approximately 15 % normalized RMSE is 
spanned by the respective best and worst performing cost function. However, no single best-
performing cost function could be identified, but the chosen cost function varies with other 
settings such as the sampling distribution or normalization. In addition, no group of cost 
functions (i.e. of ‘divergence information measures’, ‘Maximum-likelihood type measures’, 
and ‘Minimum constraint estimation’) performed generally better than the others. Although 

Fig. 1: Normalized RMSE values of the respective best performing inversion setting using different RTM 
parameter distributions as well as cost function normalization. 

Fig. 2: Influence of the number of LUT entries on the LAI estimation accuracy. In all LUTs a full random 
sampling over the same parameter ranges has been performed. In addition, for each LUT a normalized 
and a non-normalized inversion was tested. 
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the usually used root mean square error (RMSE) almost never performed best, it was however 
under the best five performing cost functions in about two third of all trial runs. It achieved in 
average only 1-2% higher errors than the respective best performing algorithm. 

- Not using the single best solution but the mean of a range of best estimation accuracy 
solutions within the LUT increases the estimation accuracy in most cases (see Figure 4 as an 
example). The use of synthetic noise levels does not show such a clear pattern. While in Figure 
4 the estimation accuracy increases with increasing noise levels, this pattern varies for other 
data sets or inversion settings (i.e. parameter sampling distribution, LUT size, or cost function). 
This optimization should therefore ideally be conducted separately for each new data set. 

- Inverting the LUT over each pixel without fixing the local viewing and illumination angles for 
each pixel seems not to affect the LAI derivation accuracy. However, when comparing the true 

Fig. 4: Heat map of the RMSE of LAI derivation based on the added synthetic noise and on the use of 
multiple solutions. 

Fig. 3: Normalized RMSE values of the LAI estimation depending on the number of LUT entries and 
on the selected cost function. 
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  Fig. 5: Comparison of the true sun zenith (tts), sensor zenith (tto) and relative azimuth angles (azi) of 
HySpex flight strip A02 in the trop row to the respective angle maps derived through LUT inversion in 
the bottom row. 5 

 



- sun and sensor zenith angles as well as the relative azimuth maps (all corrected for local 
topography) with the respective angle maps derived through inversion (see Figure 5), it 
becomes clear that the correct system geometry is not reproduced. Obviously only a small 
range of simulated angles is selected, and the patter of the maps is different. While the true 
angle maps reflect the flight direction, sensor characteristics und underlying topographic 
conditions, the modeled angles seem rather to change with individual fields, i.e. probably 
compensating for spectral changes due to vegetation. This underlines the necessity to account 
for the local geometry during inversion, although a sensitivity analysis on the influence of the 
three angles is needed to quantify this error. 

- The MLRA techniques and feature selection approaches used achieve slightly better results 
than the LUT-based inversion and are much faster. However, due to the small number of field 
sampling data available, the full power of these methods could probably not been exploited. 
In addition, the MLRAs trained on the field data are sometimes unstable, in the sense that no 
or no reasonable values are derived when mapping LAI. 

The conducted analysis overall improved the LAI derivation accuracy by about 15 % in comparison 
to previous works based on the RapidEye data, and provided very useful findings for the 
optimized setup of LUT based biophysical parameter derivation. Further, the ARTMO software 
simplified working with hyperspectral data. This work laid the foundation for further research on 
biophysical parameter estimation also of biomes that are more complex and the estimation of 
ecosystem processes using the SCOPE model. 

For the host institution, the work carried out during the STSM revealed some needs for 
clarification within the software handbook and a couple of minor bugs. Updated ARTMO versions 
were published on March 9th, 21st, and 26th 2015. 
 
Future collaboration 

Since the STSM provided the possibility for Ms. Asam to gain a comprehensive knowledge on the 
structure and functioning of the ARTMO toolbox, some advancements on ARTMO were discussed 
during the stay of Ms. Asam. One option would be to implement an application that enables the 
use of variable scene geometries, i.e. an algorithm that identifies all occurring scene geometries 
first and adapts the identified angles or angle rages for the spectral modeling. During inversion, 
this application would enable to subset the LUT based on the pixel specific geometries and hence 
reducing the dimensionality problem. This extension would enable the correct analysis of 
airborne data, of composite images, time series, as well as of images acquired over complex 
terrain. The development of such an application by Ms. Asam is foreseen. 
 
Foreseen publications from the STSM 

An output of the STSM is a contribution to the 9th EARSeL ‘SIG Imaging Spectroscopy Workshop’ 
which was presented on April 15th, 2015, on the use of hyperspectral data for grassland LAI 
derivation in comparison to the use of multispectral data. On the same subject, a peer-reviewed 
publication in the IEEE Journal of Selected Topics in Applied Earth Observations and Remote 
Sensing (JSTARS) special issue is planned. 
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Confirmation by the host institution of the successful execution of the STSM 
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