Modelling of ecosystem respiration with proximal sensing data and meteorological measurements

> Bruna Oliveira Center for Environmental and Marine Studies University of Aveiro, Aveiro, Portugal

Bruna.Oliveira@ua.pt

Mirco Migliavacca

Biosphere-Atmosphere Interactions and Experimentation @ Biogeochemical Integration Department

Max Planck Institute for Biogeochemistry Jena, Germany

The STSM objective

- Simulate ecosystem respiration using proximal sensing data and meteorological measurements;
- Determine if basal respiration is more related to:
 - Structural indices (NDVI, MTCI, ND, EVI)
 - Physiological activity indices (Fy760 or PRI)

Ecosystem Respiration – R_{eco}

• CO₂ production by all organisms in a ecosystem

Soil respiration (heterotrophic + roots)

Above ground respiration (leaves, branches, stems...)

- Diverse and changing array of organisms
- Peak during night time \rightarrow no photosynthesis
- Major influence in global C cycle

Gross Primary Production – GPP

- Total energy produced by plants and cyanobacteria
 - Photo- and chemosynthesis
 - Part is used by primary producers for cellular respiration
 - Part is the net primary production NPP
- Empirical evidence for the link between GPP and $\rm R_{eco}$ for most ecosystems

GPP as driver of R_{eco}

- Network of eddy covariance and chamber measurements increased the estimates of ecosystem-scale GPP
- Upscale of GPP to regional and global scales relies on remote sensing information about:
 - Ecosystem structure
 - Light use efficiency
 - Sun-induced chlorophyll fluorescence
 - ... more being explored!

$VIs \rightarrow GPP \rightarrow R_{eco}$

- Vegetation Indeces VIs from proximal sensing to model GPP and Rb
 - Avoids the dependence on ground measurements
 - Less disturbance of the ecosystem
 - Application at regional and global scales

The Reco models

 $R_{eco} = R_b \times f(T) \times f(P)$

- Simple models:
 - One C pool
 - Overall system state
 - Different formulations for dependency on GPP
 - Estimation of Rb from VIs

Table 1 Different model formulations of the dependency of ecosystem respiration (R_{BCO}) on gross primary productivity (GPP) used in this analysis

Model	Formula
LinGPP	$R_{\rm ECO} = (R_0 + k_2 {\rm GPP})$
	$\times e^{E_0\left(\frac{1}{T_{ref}-T_0}-\frac{1}{T_A-T_0}\right)} \times \frac{\alpha k + P(1-\alpha)}{k + P(1-\alpha)}$
ExpGPP	$R_{\rm ECO} = [R_0 + R_2(1 - e^{k_2 \rm GPP})]$
	$\times e^{E_0\left(\frac{1}{T_{rel}-T_0}-\frac{1}{T_A-T_0}\right)} \times \frac{\alpha k + P(1-\alpha)}{k + P(1-\alpha)}$
MicMenGPP	$R_{\rm ECO} = \left[R_0 + \frac{R_{\rm MAX} \rm{GPP}}{\rm{GPP} + hR_{\rm MAX}}\right]$
	$\times e^{E_0\left(\frac{1}{T_{ref}-T_0}-\frac{1}{T_A-T_0}\right)} \times \frac{\alpha k + P(1-\alpha)}{k + P(1-\alpha)}$
addLinGPP	$R_{\rm ECO} = R_0 \times e^{E_0 \left(\frac{1}{T_{\rm ref} - T_0} - \frac{1}{T_A - T_0}\right)}$
	$\times \frac{\alpha k + P(1 - \alpha)}{k + P(1 - \alpha)} + k_2 \text{GPP}$
addExpGPP	$R_{\rm ECO} = R_0 \times e^{E_0 \left(\frac{1}{T_{\rm ref} - T_0} - \frac{1}{T_{\rm A} - T_0}\right)}$
	$\times \frac{\alpha k + P(1 - \alpha)}{k + P(1 - \alpha)} + R_2(1 - e^{k_2 \text{GPP}})$
addMicMenGPP	$R_{ECO} = R_0 \times e^{E_0 \left(\frac{1}{T_{ref} - T_0} - \frac{1}{T_A - T_0}\right)}$
	$\times \frac{\alpha k + P(1 - \alpha)}{k + P(1 - \alpha)} + \frac{R_{MAX}GPP}{GPP + hR_{MAX}}$

From Migliavacca, M. et al. (2011)

- SMANIE Small-scale MANIpulation Experiment;
- Mediterranean savannah in Caceres Spain:
- Effects of N and P fertilization on ecosystem level

- Manual static chambers (Perez-Priego et al, 2015):
 - Net CO₂ fluxes
 - Photosynthetically active radiation (PAR)
 - Air and vegetation T
 - Atmospheric P
 - Soil T @ 5 and 10 cm
 - Vapor pressure deficit

- Manual field spectrometer (Perez-Priego et al, 2015):
 - Sun-inducedchlorophyll fluorescence yield at
 760nm Fy760
 - Scaled photochemical reflectance index sPRI
 - Normalized difference vegetation index NDVI
 - MERIS terrestrial-chlorophyll index MTCI

- Net CO₂ fluxes
- Air, vegetation, soil temperature
- Structural indices (NDVI, MTCI)
- Physiological activity indices (Fy760, sPRI)
- 4 Campaigns:
 - C1: Before fertilization
 - C2: 3 weeks after fertilization, peak of growing period
 - C3 and C4: Drying period

Results – Rb driven by sPRI

Results – R_{eco} driven by measured GPP and AirT

Results – R_{eco} driven by NDVI, LST and AirT

Conclusions

- Best performance of R_{eco} models with measured GPP
- NDVI is the best structural index to model R_{eco}
- sPRI is the best physiological index to model R_{eco}
- AirT gives better results than SoilT

For the future...

Collaborations and institutes involved

MAX-PLANCK-GESELLSCHAFT Max Planck Institute for Biogeochemistry

GEFÖRDERT VOM

Alexander von Humboldt Stiftung/Foundation

NIVEPSIDUD DE EXTREMADUS

100

CSIC

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

RUSTEE training

VLISHEALINO

LICH

DI MILANO

training on Remote Sensing for Ecosystem modelling

Deutsches Zentrum für Luft- und Raumfahrt

Modelling of ecosystem respiration with proximal sensing data and meteorological measurements

Comments & Suggestions

Bruna.Oliveira@ua.pt

