

P2: Measuring sun-induced fluorescence at different scales: a review on instruments, measurement setups and protocols at leaf an canopy scale

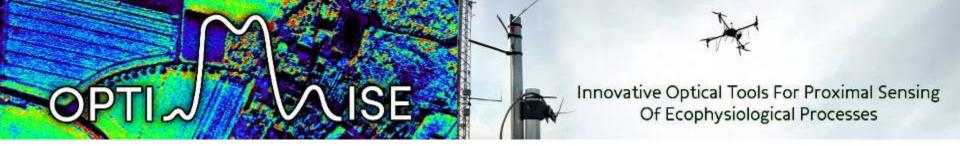
Helge Aasen, Yves Goulas, Neus Sabater Medina, Sebastian Wienecke, Shari Van Wittenberghe, Andreas Hueni, Alexander Damm, Luis Alonso, Ma Pilar Cendrero Mateo, Javier Pacheco-Labrador ...

Outline

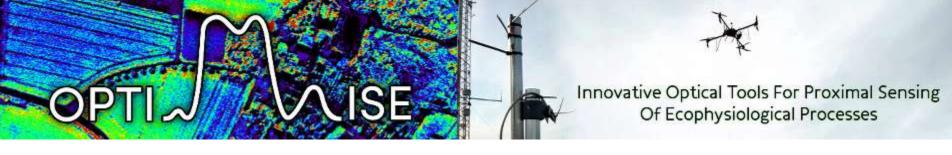
- Introduce the approche to «OPTIMSE three papers" - manuscript 2
- Outline of the manuscript
 - Review part
 - «research» part
- Current state and way to proceed

Approach

- Original idea: Compilation of knowledge of the OPTIMSE community and beyond
- > Expert interviews (questionnaire)
- > Literature review
- > Expert contributions



Outline


1. Introduction [1-2 page, Helge, Yves]	4
1.1. General Intro [Helge:]	4
1.2. Intro F [Yves:]	4
 Basic principle of F measurement at O2A and O2B [Yves (and paper3 p just brief link] 	eople), 6
2. Leaf level [Shari, Luis]	7
2.1. Intro [max ½ page]	7
2.2. Fluorwat [1 page, luis]	8
3. Canopy level [Helge]	8
3.1. Intro [Helge] [1/2 page]	8
3.2. Terminology [Helge] [1/2 page]	9
3.1. Instruments	11
3.2. Measurement setup	12
3.3. Installations	13
3.x.x. viewing geometry	14
3.x Measurement protocols	14
3.5. Airborne measurements	15
Hyplant	15
Preprocessing of HyPlant Data	17
HyPlant Fluorescence Retrieval	17
Surface Reflectance from HyPlant	18
apex (medium resolution imagers)	18
micro-hyperspec	19 19
Aisa eagle	
point spec	21
5. Quality check [Sebastian, Sergio, Tommi]	25
6. Atmospheric influences / correction [Luis - NeusA]	30
 5.1. Atmospheric correction for airborne scale 	32
5.2. Atmospheric Effects on UAVs measurements	34
5.3. Atmospheric correction for canopy level (few meters above the surface)	35
7. Metadata and ancillary data [Shari, Andy]	38
7.1 Core sensor metadata and scene description	39
7.2 Ancillary data for target spatiotemporal spectral variability	40
7.3 Ancillary data for F processing and interpretation	41
8. Complementary data to interpret F / quality check [Yves?]	42
X. ??Spatial heterogeneity [Alex Damm, Andreas Hueni?, Sergio?, Enrico?]	43
X. Upscaling?	43
Y Open issues overall discussion outlook and conclusion [Helpe Yves all]	43

Tools For Proximal Sensing iological Processes

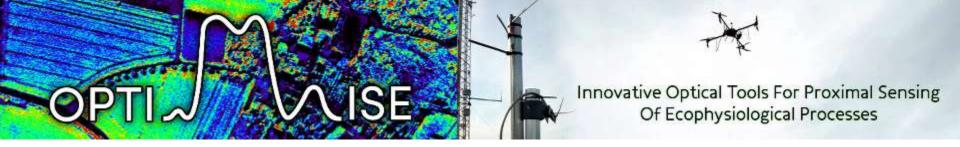
PART1: Instruments, measurement setups and installations (canopy)

Instruments

(since Meroni et al. 2009)

Name	range [nm]	FWHM [nm]	sampli ng interval [nm]	noise level in NEdL or SNR	spatial res. [pixel]	F retrieved at	retrieval methods
ASD FieldSpec III	350 - 2500	3	1.4	NEdL 1.1 x 10-9 W/cm2/nm/sr			3FLD (Schickling et al. 2016; Damm et al. 2011; Damm et al. 2014),
ASD FieldSpec Pro FR	350 - 2500	o.	1.4		2	THESE ARE LEAF level measurements / indoor - exclude from table	FLD (Cordon et al. 2016; Romero et al. 2018)
Ocean Optics HR2000+ (FluoSpec system)	680 - 775	0.13				760	SFM (Yang et al. 2017; Yang et al. 2015)
Ocean Optics HR2000+ (TriFLEX system)	630 - 815	0.5	0.09			687, 760	nFLD (Daumard et al. 2010; Goulas et al. 2017; Daumard et al. 2012)
Ocean Optics HR4000	707 - 805	0.13	0.02	300 SNR			SVD, FLD (Guanter et al. 2013); SFM (Guanter et

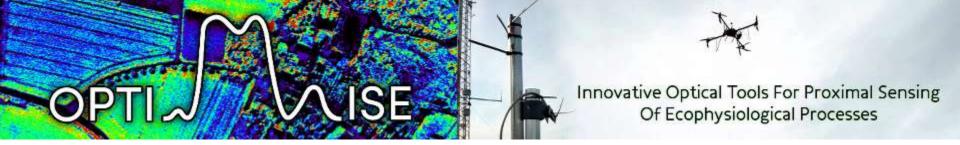
https://docs.google.com/document/d/1UVb6B 07wYZUcL9oYDojCtCM3LNRB1C8Pv0Tufmskb c/edit?usp=sharing


							al. 2013; Migliavacca et al. 2017; Rossini et al. 2015)
Ocean Optics HR4000	700 - 800	0.1	0.04			760	SFM (Cogliati et al. 2015)
Ocean Optics QE Pro	645 - 805	0.31	0.155	1000 SNR	1		FLD, 3FLD, iFLD, pFLD, A-SFM (Liu et al. 2017)
Ocean Optics STS-VIS (SIF-Sys system)	337 - 823	3		1500 SNR (nominal)		760	FLD (Burkart et al. 2015)
Ocean Optics USB4000	400 - 1000	1.5					FLD (Cheng et al. 2013)

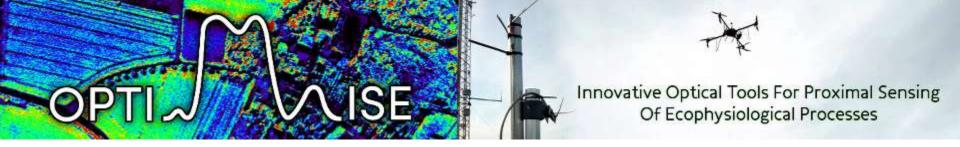
Measurement setups

- Single Spectrometer, Single FOV (1-1)
- Single spectrometer, dual FOV (1-2)
- Dual spectrometer (2-2)
- Panel and Cosine

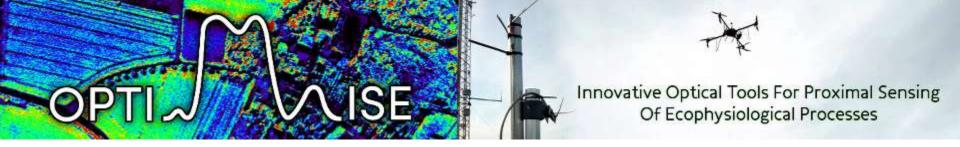
Wanted: Figures / Schematics



Setups and installations table

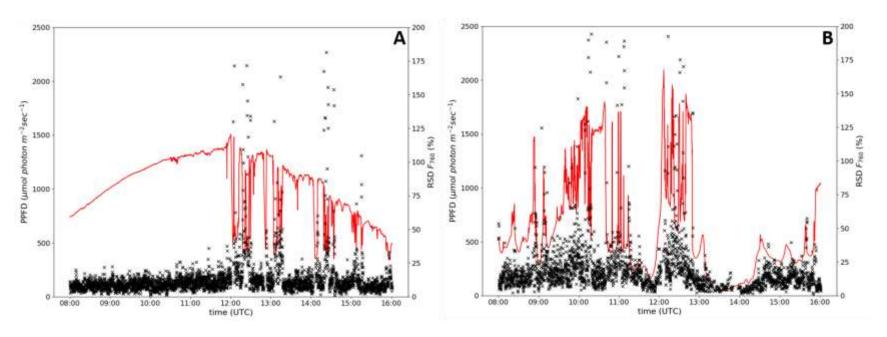

Platform and system	Location	target	height above canopy (m)	downward FOV and viewing zenith angle	Referen ce mode	reference frequency	atmospheri c correction	Suppleme ntal measurem ents	Main aim	reference
pole	Maryland, USA (39.030°N, 76.845°W) 2008, 2010, 2011, 2012, 2016	corn (Zea mays L.)	1		1-1 panel			LAI, fPAR, PRI (531.01, 570.08), Eddy	GPP	cheng 2013
rotating mast	Northern Italy (45°03'46. 25 N, 8°40'06.74 E, 88 m a.s.l.)	rice (Oryza sativa L. var. japonica)	1	25° nadir	1-1 panel	sequentiall y, one reference per measurem ent			Method paper	guanter 2013

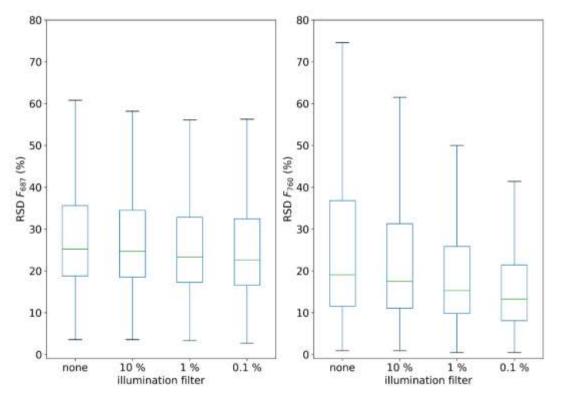
https://docs.google.com/document/d/1jcOmwDeB9T6UBxRXNPm7gTmW29JSyvQEnMNqNMlJLgU/edit?usp=sharing



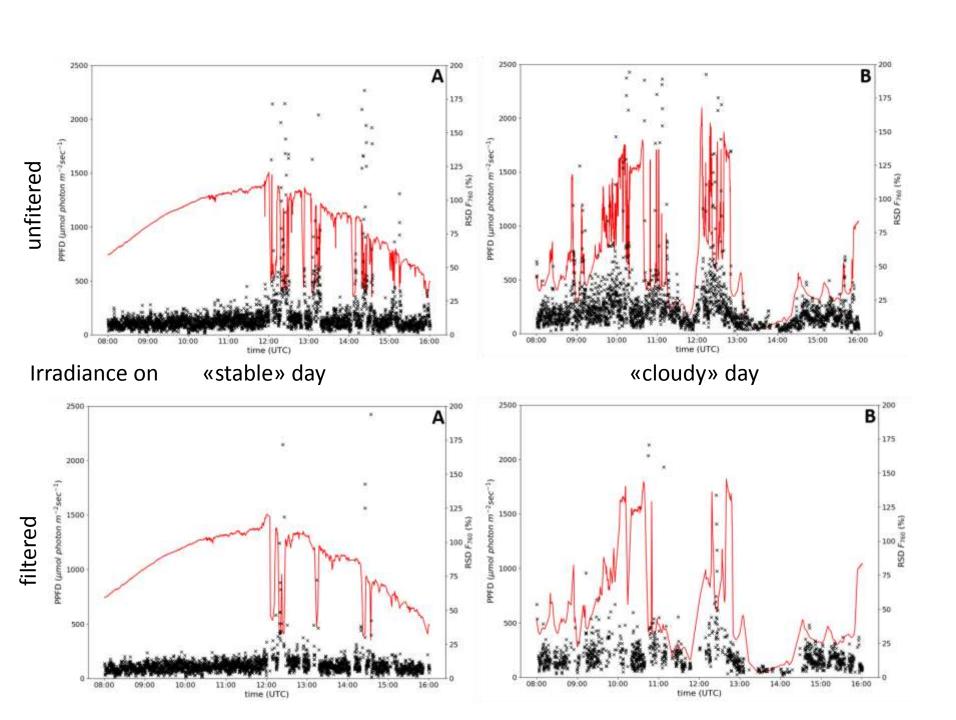
Document with list of measurement sites, setups and installations

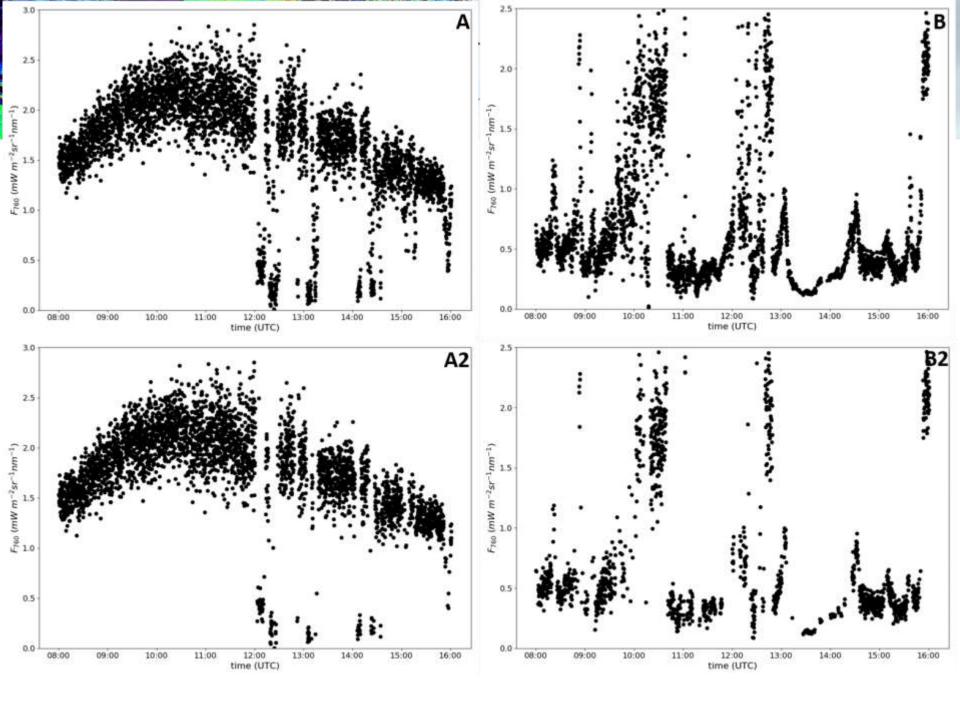
- Please participate:
- have a look and fill it
 - add sensor, other measurements, location, height dual FOV, single FOV
 - Please send me a mail helge.aasen@usys.ethz.ch




PART2: post processing

Quality checks (Sebastian Wienecke)


 Data filtering based on changes in irradiance between two sucessive measurements

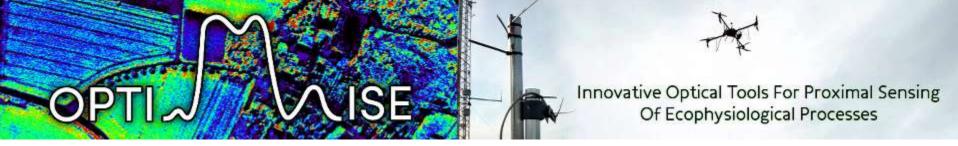


Box plot of the relative standard deviation (RSD) within a 30 sec moving window (6 sec per measurement cycle) of fluorescence at 760 and 687 nm (F_{760} and F_{687}) for four different illumination quality filter.

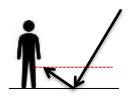
➤ While with the 10 % filter only 1 % of the data is discarded, the 1 % filter discards 25% and the 0.1 % ca. 70 % of the data. Due to the strong data loss we therefore advise to use a 1 % illumination change filter.

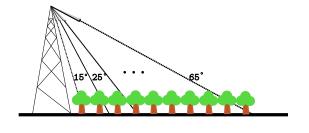
Atmospheric effects on Solar Induced Chlorophyll Fluorescence retrieved on proximal sensing: Approaches for different scales

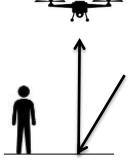
Neus Sabater, Luis Alonso and José Moreno


Image Processing laboratory (IPL), University of Valencia, Valencia, SPAIN

COST is supported by the EU Framework Programme Horizon 2020



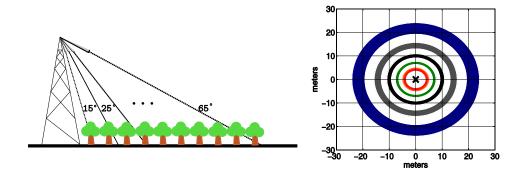

Correction is assumed in airborne spectroscopy


- Is it necessary at closer range?
 - Ground level (human scale)< 2 m

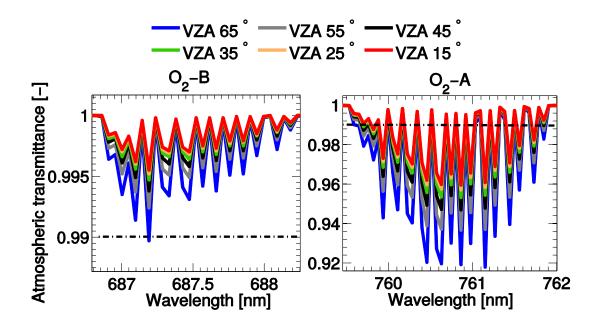
Tower level~ 10 - 20 m

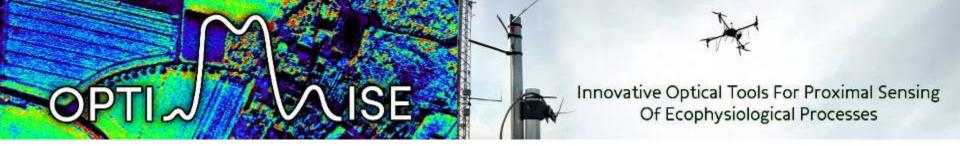
– UAV level~ 2 – 100 m

- At human-scale it seems <u>not</u> necessary to correct from oxygen absorption neither from aerosol transmittance.
- Except maybe above 2m



- At tower-scale it is <u>necessary</u> to correct from oxygen absorption but on clear sky conditions it might not be necessary to correct from aerosol transmittance.
- If only oxygen absorption is considered, it should be possible to use a parametric O2 transmittance approximation.



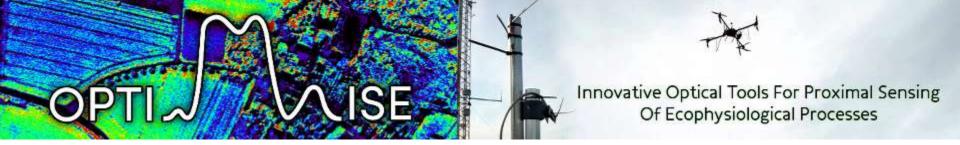

- At UAV-scale it is **necessary** to correct from oxygen absorption
- At low altitudes it seems that on clear conditions it might not be necessary to correct from aerosol transmittance.
- At high altitudes it might be necessary to also include path radiance LO

Specially important on multi-angular acquisition geometries

Specially important on up-scaling process for a proper SIF product validation

metadata/ancillary datasets

Current status


- Some people have delivered a first draft of their inputs
- Still some large gaps
- Putting everything together in a consistent flow will take some effort

What is still missing

 Section on the current state of upscaling from leaf to canopy – models?

WANTED:

- People who could write a section on upscaling
- People who could write a section on complementary data to make sense of the measured F
- People who commit themselves to intensively review and edit the manuscript before submission to
 - Assure a high quality
 - Make sure we did not miss anything
 - Review with the "seniors eye" to put everything in perspective

A big thanks to everyone who has already contributed to the OPTIMSE three papers

A big to everyone that will contribute to the OPTIMSE three papers in future

Thanks to the whole OPTIMISE community for a great time

