

Analysis of short-term vegetation dynamics combining hyperspectral measurements and RTMs inversion

<u>Marco Celesti</u>

Christiaan van der Tol, Sergio Cogliati, Roberto Colombo, Franco Miglietta, Cinzia Panigada, Francisco Pinto, Uwe Rascher, Dirk Schüttemeyer, Giulia Tagliabue , Peiqi Yang, Micol Rossini

Remote Sensing of Environmental Dynamics Laboratory Department of Earth and Environmental Sciences University of Milano-Bicocca Milano, Italy

ELISTUDI DI MILANO

marco.celesti@unimib.it

- Sun-induced chlorophyll fluorescence is emitted as a function of absorbed excitation energy (APAR) and fluorescence quantum efficiency (Φ_F)

- Sun-induced chlorophyll fluorescence is emitted as a function of absorbed excitation energy (APAR) and fluorescence quantum efficiency (Φ_F)

 it is then propagated through the leaf and the canopy -> Top
 Of Canopy (TOC) fluorescence

Porcar-Castell et al. (2014) JEB

- Sun-induced chlorophyll fluorescence is emitted as a function of absorbed excitation energy (APAR) and fluorescence quantum efficiency (Φ_F)

 it is then propagated through the leaf and the canopy -> Top
 Of Canopy (TOC) fluorescence

→ leaf pigments/structure + canopy structure + physiology + environmental condition ...

Porcar-Castell et al. (2014) JEB

- Sun-induced chlorophyll fluorescence is emitted as a function of absorbed excitation energy (APAR) and fluorescence quantum efficiency (Φ_F)

- it is then propagated through the leaf and the canopy -> Top
Of Canopy (TOC) fluorescence

→ leaf pigments/structure + canopy structure + physiology + environmental condition ...

 \rightarrow growing amount of products

Porcar-Castell et al. (2014) JEB

- Sun-induced chlorophyll fluorescence is emitted as a function of absorbed excitation energy (APAR) and fluorescence quantum efficiency (Φ_F)

it is then propagated through the leaf and the canopy -> Top
Of Canopy (TOC) fluorescence

→ leaf pigments/structure + canopy structure + physiology + environmental condition ...

 \rightarrow growing amount of products

Porcar-Castell et al. (2014) JEB

Developing a flexible modeling framework for integrating several sources of information at different scales

Rossini et al. (2016) RS

700

6.046

100

Rossini et al. (2016) RS

van der Tol et al. (2009,2014) Vilfan et al. (2016)

van der Tol et al. (2016) RSE & Migliavacca et al. (2017) New Phyt. Using far-red fluorescence (F_{760}) and reflectance ≈ 1 nm FWHM

- to retrieve F and Φ_F from SCOPE inversion on very high resolution TOC measurements, together with "classical" vegetation parameters

 to compare modeled F values (red and far-red) with state of the art independent radiance-based retrievals (Spectral Fitting Method and SpecFit)

 to evaluate temporal evolution of retrieved parameters for assessing vegetation status during an induced stress experiment

Material and Methods – data acquisition

Different doses applied over ~30 days

- ~ 1600 measurements
- \rightarrow ~1400 after filtering

Material and Methods – data acquisition

H. above ground (cm)	~130 cm
Observed diam.(cm)	~58 cm

Different doses applied over ~30 days

- ~ 1600 measurements
- \rightarrow ~1400 after filtering

Spectrometer	Range (nm)	FWHM (nm)	Application
1 – HR4000f	350-1050	1	ρ and VIs computation
2 – QE65000	657-740	0.25	F at O ₂ -B
3 – HR4000a	700-800	0.1	F at O ₂ -A

Material and Methods – data acquisition

Observed diam.(cm) ~58 cm	

Different doses applied over ~30 days

- ~ 1600 measurements
- \rightarrow ~1400 after filtering

Spectrometer	Range (nm)	FWHN (nm)	Application
1 – HR4000f	350-1050	1	ρ and VIs computation
2 – QE65000	657-740	0.25	F at O ₂ -B
3 – HR4000a	700-800	0.1	F at O ₂ -A

Merged together

Material and Methods – Inversion cost function

$$f = ER1^{T}ER1 + w * ER2^{T}ER2$$

$$ER1 = \begin{cases} \rho^{*,RTM}(\lambda) - \rho^{*,meas}(\lambda) &, \lambda \in \lambda_{noabs} \\ (\rho^{*,RTM}(\lambda) - \rho^{*,RTM}_{BL}(\lambda)) + \\ -(\rho^{*,meas}(\lambda) - \rho^{*,meas}_{BL}(\lambda)) &, \lambda \in \lambda_{abs} \end{cases}$$

$$ER2 = \frac{p - p_{0}}{\sigma_{p_{0}}}$$

Material and Methods – Inversion cost function

$$f = ER1^{T}ER1 + w * ER2^{T}ER2$$

$$ER1 = \begin{cases} \rho^{*,RTM}(\lambda) - \rho^{*,meas}(\lambda) &, \lambda \in \lambda_{noabs} \\ (\rho^{*,RTM}(\lambda) - \rho^{*,RTM}_{BL}(\lambda)) + \\ -(\rho^{*,meas}(\lambda) - \rho^{*,meas}_{BL}(\lambda)) &, \lambda \in \lambda_{abs} \end{cases}$$

$$ER2 = \frac{p - p_{0}}{\sigma_{p_{0}}}$$

- Generally good agreement between modeled and measured reflectance
- Different shapes for full spectrum F modelling

Results – F values comparison

No systematica bias in F_{687} but overestimation of F_{760}

- \rightarrow inherent to fluorescence optipar shape
- → Overestimation of F_{760} can be also linked to general slight overestimation of Φ_F

Results – F values comparison

Systematic overestimation of F_{int} reflects results values of F_{760} \rightarrow Strong overall weight of far-red fluorescence

Results – time series

Results – time series

Maximum theoretical range of Φ_F is [0.01:0.05]

 \rightarrow almost entirely covered

Very high Φ_F values are in good agreement with the effect of Dicuran on PQ and NPQ

- No variation in the control

- No variation in the control

- in the treated plots, $\Phi_{\rm F}$ and pigments respond sequentially to the stress event. After 14 days back to pre-treatment state in lower doses

- No variation in the control

- in the treated plots, $\Phi_{\rm F}$ and pigments respond sequentially to the stress event. After 14 days back to pre-treatment state in lower doses

- No variation in the control

- in the treated plots, $\Phi_{\rm F}$ and pigments respond sequentially to the stress event. After 14 days back to pre-treatment state in lower doses

- No variation in the control

- in the treated plots, $\Phi_{\rm F}$ and pigments respond sequentially to the stress event. After 14 days back to pre-treatment state in lower doses

- in the highest dose plants started brownishing and not recovered anymore

- For the first time we inverted SCOPE on very high resolution top of canopy measurements
- The concurrent retrieval of veg. parameters and sun-induced chlorophyll fluorescence provided coherent information on their dynamics. Modeled absolute values of F were in very good agreement with a state of the art retrieval (SFM)
- F can be used as an early warning, Concurrent evaluation of biochem/struct/fluorescence can provide more information on veg. dynamics (stress/recovery)
- With this approach we avoid "contradictory" results (but also missing "surprising" ones), within the domain of applicability of the model

OPTIMISE COST action for funding my STSM to ITC (C. van der Tol)

THANKS FOR YOUR ATTENTION

Marco Celesti

Remote Sensing of Environmental Dynamics Laboratory, DISAT, University of Milano-Bicocca, Milano, Italy

marco.celesti@unimib.it

Results - Numerical inversion of reflectance to model F

- Relatively small effect of Vcmo and meteo var. on normalized F (F/PAR)
- In unstressed canopies F variablity is driven by biochemical and structural parameters + incoming light

Results - Numerical inversion of reflectance to model F

F response to strong reduction of PQ and NPQ

- Treated F values close to theoretical maximum

van der Tol et al. (2016) RSE

Results

B LINITARI

