
Correlation between vegetation indices and ant populations – spectral measurements from UAV

Michał T. Chiliński¹, Paweł J. Mazurkiewicz², Lech Krzysztofiak³, Enrico Tomelleri⁴

¹Laboratory of Image-based Information Faculty of Biology, University of Warsaw
²Nencki Institute of Experimental Biology, Polish Academy of Sciences
³Scientific and Educational Laboratory, Wigry National Park
⁴Free University of Bozen-Bolzano

> COST OPTIMISE 22 II 2018 (Sofia) reasearch funded by Polish Forest Fund

Problem: How vegetation state (described by vegetation index) is related with local ant populations

- Investigation of relation between ants and plants on canopy level
- Utilization of data from automatic sensors on LAI/monitoring towers
- Is it possible to aid myrmecological surveying with remote sensing products?

Remote sensing point of view

- Selection of ,,the best" vegetation index for differentation of ants habitats
- Verification of high resolution measurement scheme with BRDF modelling/verification
- Utilization of spectral measurement payload developed during STSM in 2016

- Investigation of relation between ants and plants on canopy level
- Utilization of data from automatic sensors on LAI/monitoring towers
- Is it possible to aid myrmecological surveying with remote sensing products?

Remote sensing point of view

- Selection of ,,the best" vegetation index for differentation of ants habitats
- Verification of high resolution measurement scheme with BRDF modelling/verification
- Utilization of spectral measurement payload developed during STSM in 2016

- Investigation of relation between ants and plants on canopy level
- Utilization of data from automatic sensors on LAI/monitoring towers
- Is it possible to aid myrmecological surveying with remote sensing products?

Remote sensing point of view

- Selection of ,,the best" vegetation index for differentation of ants habitats
- Verification of high resolution measurement scheme with BRDF modelling/verification
- Utilization of spectral measurement payload developed during STSM in 2016

- Investigation of relation between ants and plants on canopy level
- Utilization of data from automatic sensors on LAI/monitoring towers
- Is it possible to aid myrmecological surveying with remote sensing products?

Remote sensing point of view

- Selection of ,,the best" vegetation index for differentation of ants habitats
- Verification of high resolution measurement scheme with BRDF modelling/verification
- Utilization of spectral measurement payload developed during STSM in 2016

- Investigation of relation between ants and plants on canopy level
- Utilization of data from automatic sensors on LAI/monitoring towers
- Is it possible to aid myrmecological surveying with remote sensing products?

- Selection of ,,the best" vegetation index for differentation of ants habitats
- Verification of high resolution measurement scheme with BRDF modelling/verification
- Utilization of spectral measurement payload developed during STSM in 2016

- Investigation of relation between ants and plants on canopy level
- Utilization of data from automatic sensors on LAI/monitoring towers
- Is it possible to aid myrmecological surveying with remote sensing products?

- Selection of ,,the best" vegetation index for differentation of ants habitats
- Verification of high resolution measurement scheme with BRDF modelling/verification
- Utilization of spectral measurement payload developed during STSM in 2016

- Investigation of relation between ants and plants on canopy level
- Utilization of data from automatic sensors on LAI/monitoring towers
- Is it possible to aid myrmecological surveying with remote sensing products?

- Selection of ,,the best" vegetation index for differentation of ants habitats
- Verification of high resolution measurement scheme with BRDF modelling/verification
- Utilization of spectral measurement payload developed during STSM in 2016

- Investigation of relation between ants and plants on canopy level
- Utilization of data from automatic sensors on LAI/monitoring towers
- Is it possible to aid myrmecological surveying with remote sensing products?

- Selection of ,,the best" vegetation index for differentation of ants habitats
- Verification of high resolution measurement scheme with BRDF modelling/verification
- Utilization of spectral measurement payload developed during STSM in 2016

Spectral measurement payload based on COST-STSM-ES1309-050916-079512 outcome

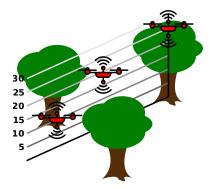
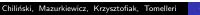


Figure 2 : Light absorption measurement within a tree canopy


3 N 4

Wigry National Park

- since 1989
- area 150.9 km²
- - forests 94.5 km²
- - waters 29.1 km²
- other 27.3 km²
- Masurian Lake District

Most popular phytocenosis

- Carpinion betuli
 - European hornbeam/Silver birch
- Dicrano-Pinion
 - Scots pine/Silver fir

Correlation between vegetation indices and ant populations

Wigry National Park

- since 1989
- area 150.9 km²
- forests 94.5 km²
- - waters 29.1 km²
- - other 27.3 km²
- Masurian Lake District

Most popular phytocenosis

- Carpinion betuli
 - European hornbeam/Silver birch
- Dicrano-Pinion
 - \bullet Scots pine/Silver fir

Location Wigry National Park

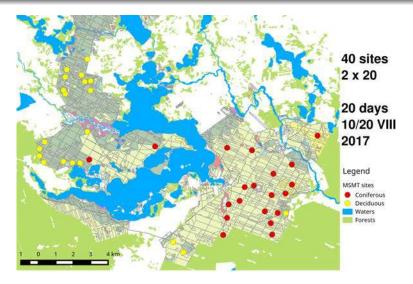


Figure 4 : Plan of measurement sites

Chiliński, Mazurkiewicz, Krzysztofiak, Tomelleri Correlation between vegetation indices and ant populations

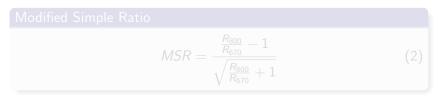
э

$$NDVI = \frac{R_{800} - R_{670}}{R_{800} + R_{670}}$$

Modified Simple Ratio

$$MSR = rac{rac{R_{800}}{R_{670}} - 1}{\sqrt{rac{R_{800}}{R_{670}} + 1}}$$

Modified Chlorophyll Absorption Ratio Index 2


$$MCARI2 = \frac{1.5[2.5(R_{800} - R_{670}) - 1.3(R_{800} - R_{550})]}{\sqrt{(2R_{800} + 1)^2 - (6R_{800} + 5\sqrt{R_{670}}) - 0.5}}$$
(3)

Set of indices in VIS-NIR. Selection based on Haboudane et. al 2004

Chiliński, Mazurkiewicz, Krzysztofiak, Tomelleri Correlation between vegetation indices and ant populations

$$NDVI = \frac{R_{800} - R_{670}}{R_{800} + R_{670}} \tag{1}$$

3

$$MCARI2 = \frac{1.5[2.5(R_{800} - R_{670}) - 1.3(R_{800} - R_{550})]}{\sqrt{(2R_{800} + 1)^2 - (6R_{800} + 5\sqrt{R_{670}}) - 0.5}}$$
(3)

Chiliński, Mazurkiewicz, Krzysztofiak, Tomelleri Correlation between vegetation indices and ant populations

$$NDVI = \frac{R_{800} - R_{670}}{R_{800} + R_{670}} \tag{1}$$

$$MSR = \frac{\frac{R_{800}}{R_{670}} - 1}{\sqrt{\frac{R_{800}}{R_{670}} + 1}}$$
(2)

Modified Chlorophyll Absorption Ratio Index 2

$$MCARI2 = \frac{1.5[2.5(R_{800} - R_{670}) - 1.3(R_{800} - R_{550})]}{\sqrt{(2R_{800} + 1)^2 - (6R_{800} + 5\sqrt{R_{670}}) - 0.5}}$$
(3)

Set of indices in VIS-NIR. Selection based on Haboudane et. al 2004

Chiliński, Mazurkiewicz, Krzysztofiak, Tomelleri Correlation between vegetation indices and ant populations

$$NDVI = \frac{R_{800} - R_{670}}{R_{800} + R_{670}} \tag{1}$$

$$MSR = \frac{\frac{R_{800}}{R_{670}} - 1}{\sqrt{\frac{R_{800}}{R_{670}} + 1}}$$
(2)

・ 同 ト・ ・ ヨ ト・ ・ ヨ ト

Modified Chlorophyll Absorption Ratio Index 2

$$MCARI2 = \frac{1.5[2.5(R_{800} - R_{670}) - 1.3(R_{800} - R_{550})]}{\sqrt{(2R_{800} + 1)^2 - (6R_{800} + 5\sqrt{R_{670}}) - 0.5}}$$
(3)

Set of indices in VIS-NIR. Selection based on Haboudane et. al 2004

Ocean Optics Spectrometer STS		
Parameter	Specification	
Dimensions	40 mm x 42 mm x 24 mm	
Weight	60 grams	
Detector	ELIS 1024	
FoV	30 ⁰ bare optics	
Wavelengths	335 – 824nm (VIS)	
	633 – 1123nm (NIR)	
Resolution	3.0 nm (optical)	
	0.47 nm (digital)	
Interface	USB	

Figure 5 : Ocean Optics STS-NIR

2 sensors VIS/NIR (both downside)

Chiliński, Mazurkiewicz, Krzysztofiak, Tomelleri

Table 1 : Ocean Optics STS specification

Correlation between vegetation indices and ant populations

э

Figure 6 : GoPro Hero Black3+

12Mpix (4000×3000px)

э

- FOV (diagonal)
 - 149.2°
 - 115.7°
 - 79.7°
- intervalometer

Figure 7 : Versa X6 Research

Size 850 × 850 Motors Weight Payload mass Speed 16H Flight time

850 × 850 × 340-450 [mm] 6 5000 [g] 2500 / 5000 [g] 16H [m/s], 6V [m/s] 10 - 15 [min]

Table 2 : Versa X6 Research specification

Chiliński, Mazurkiewicz, Krzysztofiak, Tomelleri Correlation between vegetation indices and ant populations

Methods UAV:integrated platform

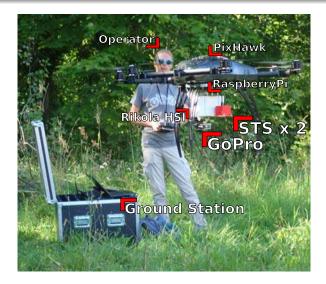


Figure 8 : Integrated platform during flight

Chiliński, Mazurkiewicz, Krzysztofiak, Tomelleri Correlation between vegetation indices and ant populations

∃ → (∃ →

parameter	value
Flight altitude	50m above canopy level
Support size	1300m ²
No of spectra	500 - 1500 (per site)
White target calibration	before and after flight
No of RGB pictures	200 - 800 (per site)
GPS time res.	10Hz
Atitude time res.	50Hz
Flight time	7 min (per site)
Operation mode	manual $+$ waypoint
Ground measurements	Sunphotometer

э

・ 「 ト ・ ヨ ト ・ ・

Field campaign demanding locations

Figure 9 : Limited space for drones operation

Chiliński, Mazurkiewicz, Krzysztofiak, Tomelleri Correlation between vegetation indices and ant populations

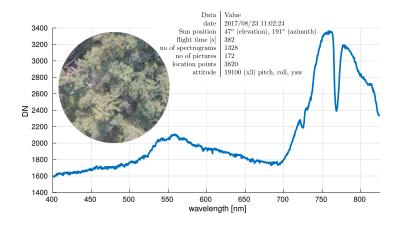


Figure 10 : quicklook of selected dataset [G6]

• = • •

э

Figure 11 : Workflow od vegetation indices estimation

Chiliński, Mazurkiewicz, Krzysztofiak, Tomelleri Correlation between vegetation indices and ant populations

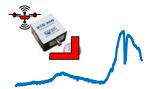
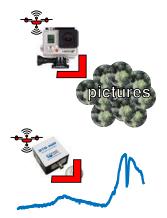
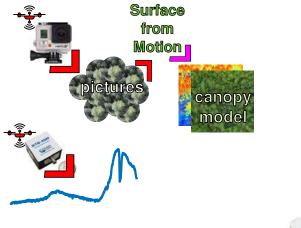

.⊒ →

Figure 11 : Workflow od vegetation indices estimation



.⊒ →

Figure 11 : Workflow od vegetation indices estimation



. ⊒ →

Figure 11 : Workflow od vegetation indices estimation

< ≣ ▶

-

Figure 11 : Workflow od vegetation indices estimation

Chiliński, Mazurkiewicz, Krzysztofiak, Tomelleri Correlation between vegetation indices and ant populations

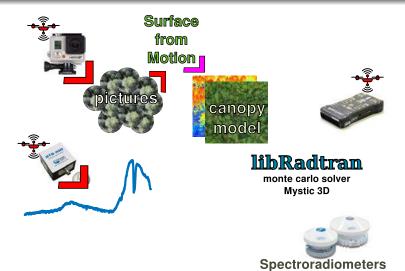


Figure 11 : Workflow od vegetation indices estimation

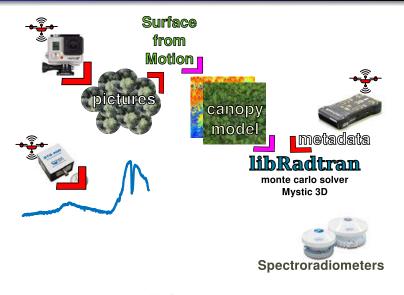


Figure 11 : Workflow od vegetation indices estimation

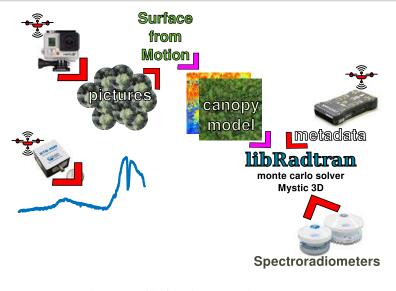


Figure 11 : Workflow od vegetation indices estimation

Chiliński, Mazurkiewicz, Krzysztofiak, Tomelleri Correlation between vegetation indices and ant populations

.⊒ →

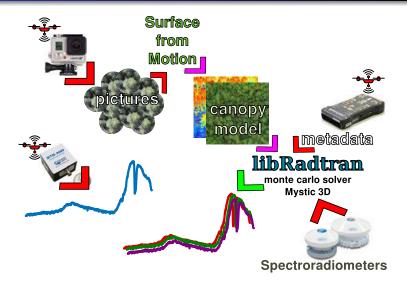


Figure 11 : Workflow od vegetation indices estimation

Chiliński, Mazurkiewicz, Krzysztofiak, Tomelleri Correlation between vegetation indices and ant populations

.⊒ →

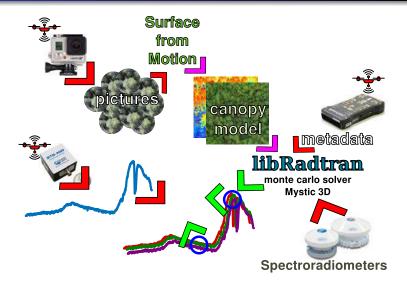


Figure 11 : Workflow od vegetation indices estimation

Chiliński, Mazurkiewicz, Krzysztofiak, Tomelleri Correlation between vegetation indices and ant populations

.⊒ →

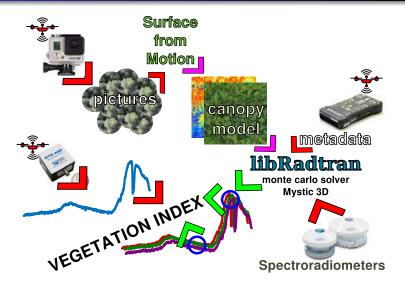


Figure 11 : Workflow od vegetation indices estimation

Chiliński, Mazurkiewicz, Krzysztofiak, Tomelleri Correlation between vegetation indices and ant populations

- mean values from every site (very small confidence intervals x high number of input spectra)
- comparision between two different forest types (t-test for mean)
- variability inside groups (standard measurements, changes reflects changes in ecosystem)

Ants populations

In every location number of ants, number of different species and number of ants looking for food was checked

- Spearman's rank correlation coefficient
- Separate datasets for both forest types
- Significance of results for $\alpha = 0.95$

・同・ ・ヨ・ ・ヨ・

- mean values from every site (very small confidence intervals x high number of input spectra)
- comparision between two different forest types (t-test for mean)
- variability inside groups (standard measurements, changes reflects changes in ecosystem)

Ants populations

In every location number of ants, number of different species and number of ants looking for food was checked

- Spearman's rank correlation coefficient
- Separate datasets for both forest types
- Significance of results for $\alpha = 0.95$

・同・ ・ヨ・ ・ヨ・

- mean values from every site (very small confidence intervals x high number of input spectra)
- comparision between two different forest types (t-test for mean)
- variability inside groups (standard measurements, changes reflects changes in ecosystem)

Ants populations

In every location number of ants, number of different species and number of ants looking for food was checked

- Spearman's rank correlation coefficient
- Separate datasets for both forest types
- Significance of results for $\alpha = 0.95$

< □→ < □→ < □→

- mean values from every site (very small confidence intervals x high number of input spectra)
- comparision between two different forest types (t-test for mean)
- variability inside groups (standard measurements, changes reflects changes in ecosystem)

Ants populations

In every location number of ants, number of different species and number of ants looking for food was checked

- Spearman's rank correlation coefficient
- Separate datasets for both forest types
- Significance of results for $\alpha = 0.95$

・同・ ・ヨ・ ・ヨ・

- mean values from every site (very small confidence intervals x high number of input spectra)
- comparision between two different forest types (t-test for mean)
- variability inside groups (standard measurements, changes reflects changes in ecosystem)

Ants populations

In every location number of ants, number of different species and number of ants looking for food was checked

- Spearman's rank correlation coefficient
- Separate datasets for both forest types
- Significance of results for lpha= 0.95

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

- mean values from every site (very small confidence intervals x high number of input spectra)
- comparision between two different forest types (t-test for mean)
- variability inside groups (standard measurements, changes reflects changes in ecosystem)

Ants populations

In every location number of ants, number of different species and number of ants looking for food was checked

- Spearman's rank correlation coefficient
- Separate datasets for both forest types
- Significance of results for $\alpha = 0.95$

- mean values from every site (very small confidence intervals x high number of input spectra)
- comparision between two different forest types (t-test for mean)
- variability inside groups (standard measurements, changes reflects changes in ecosystem)

Ants populations

In every location number of ants, number of different species and number of ants looking for food was checked

- Spearman's rank correlation coefficient
- Separate datasets for both forest types
- Significance of results for $\alpha = 0.95$

- (日) (日) (日)

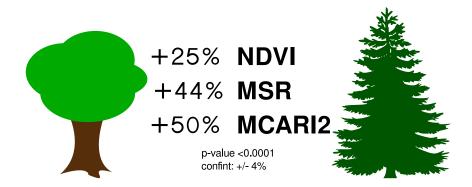
- mean values from every site (very small confidence intervals x high number of input spectra)
- comparision between two different forest types (t-test for mean)
- variability inside groups (standard measurements, changes reflects changes in ecosystem)

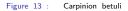
Ants populations

In every location number of ants, number of different species and number of ants looking for food was checked

- Spearman's rank correlation coefficient
- Separate datasets for both forest types
- Significance of results for $\alpha=0.95$

・ 同 ト ・ ヨ ト ・ ヨ ト




Figure 12 : Mean difference in vegetation indices between deciduous and coniferous forest

Chiliński, Mazurkiewicz, Krzysztofiak, Tomelleri Correlation between vegetation indices and ant populations

・同・ ・ヨ・ ・ヨ・

Results Deciduous forest:Carpinion betuli

Chiliński, Mazurkiewicz, Krzysztofiak, Tomelleri Correlation between vegetation indices and ant populations

イロト イポト イヨト イヨト

Number of species x VI: No significant correlation

			NDVI	MSR	MCARI2
	Myrmica ruginodis	ρ Spearmana	-0,209	-0,209	-0,254
		p-value	0,406	0,406	0,308
	Myrmica	ρ Spearmana	-0,325	-0,325	-0,339
Number of nests	rubra	p-value	0,175	0,175	0,156
	Lasius platythorax	ρ Spearmana	0,322	0,322	0,442
		p-value	0,18	0,18	0,058
	TOTAL	ρ Spearmana	-0,184	-0,184	-0,092
		p-value	0,45	0,450	0,708
Number of species with nest		ρ Spearmana	0,006	0,006	0,023
		p-value	0,979	0,979	0,925

Figure 14 : Correlation between species diversity and vegetation indices [Deciduous]

Chiliński, Mazurkiewicz, Krzysztofiak, Tomelleri Correlation between vegetation indices and ant populations

・同・ ・ヨ・ ・ヨ・

-

Number of ants prowling \times VI

		NDVI	MSR	MCARI2
Mummino murino dia	ρ Spearman	-0,044	-0,044	0,125
Myrmica ruginodis	p-value	0,857	0,857	0,610
Myrmica rubra	ρ Spearman	-0,119	-0,119	-0,055
	p-value	0,628	0,628	0,822
Lasius platythorax	ρ Spearman	0,178	0,178	0,284
	p-value	0,466	0,466	0,239
Formica rufa /	ρ Spearman	0,533	0,533	0,378
Formica polyctena	p-value	0,019	0,019	0,110
TOTAL	ρ Spearman	0,126	0,126	0,268
	p-value	0,608	0,608	0,268

Figure 15 : Correlation between number of prowling ants and vegetation indices [Deciduous]

Chiliński, Mazurkiewicz, Krzysztofiak, Tomelleri Correlation between vegetation indices and ant populations

・ 同 ト ・ ヨ ト ・ ヨ ト

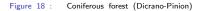
э

Figure 16 : Dome-shaped nest of Formica sp. species (fot. Tomasz Kuran)

Chiliński, Mazurkiewicz, Krzysztofiak, Tomelleri Correlation between vegetation indices and ant populations

Number of dome-shaped nests $(+barber traps) \times VI$

		NDVI	MSR	MCARI2
Barber traps –	ρ Spearman	0,632	0,632	0,632
number of species	p-value	0,252	0,252	0,252
Barber traps – number of species	ρ Spearman	0,100	0,100	0,100
	p-value	0,873	0,873	0,873
Number of dome- shaped nests	ρ Spearman	0,598	0,598	0,533
	p-value	0,007	0,007	0,019


Figure 17: Correlation between number dome-shaped (+barber traps) nests and vegetation indices [Deciduous]

Chiliński, Mazurkiewicz, Krzysztofiak, Tomelleri Correlation between vegetation indices and ant populations

・同・ ・ヨ・ ・ヨ・

Results Coniferous forest:Dicrano-Pinion

Chiliński, Mazurkiewicz, Krzysztofiak, Tomelleri Correlation between vegetation indices and ant populations

イロト イポト イヨト イヨト

Number of species x VI

			NDVI	MSR	MCARI2
	Myrmica ruginodis	ρ Spearman	-0,675	-0,675	-0,628
		p-value	0,011	0,011	0,022
	Myrmica	ρ Spearman	-0,019	-0,019	0,07
Number of	rubra	p-value	0,951	0,951	0,821
nests	Lasius platythorax	ρ Spearman	-0,513	-0,513	-0,513
		p-value	0,073	0,073	0,073
	TOTAL	ρ Spearman	-0,676	-0,676	-0,696
		p-value	0,011	0,011	0,008
Number of species with nest		ρ Spearman	-0,474	-0,474	-0,364
		p-value	0,102	0,102	0,222

Figure 19 : Correlation between species diversity and vegetation indices [Coniferous]

Chiliński, Mazurkiewicz, Krzysztofiak, Tomelleri Correlation between vegetation indices and ant populations

イロト イポト イヨト イヨト

3

Number of ants prowling \times VI: No significant correlation

		NDVI	MSR	MCARI2
Myrmica ruginodis	ρ Spearman	-0,06	-0,06	-0,233
	p-value	0,846	0,846	0,443
Mumpico mibro	ρ Spearman	0,171	0,171	0,285
Myrmica rubra	p-value	0,577	0,577	0,345
Lasius platythorax	ρ Spearman	-0,057	-0,057	0
	p-value	0,853	0,853	1
Formica rufa /	ρ Spearman	0,154	0,154	0
Formica polyctena	p-value	0,615	0,615	1
TOTAL	ρ Spearman	0,028	0,028	-0,036
	p-value	0,928	0,928	0,906

Figure 20 : Correlation between number of prowling ants and vegetation indices [Coniferous]

Chiliński, Mazurkiewicz, Krzysztofiak, Tomelleri Correlation between vegetation indices and ant populations

-

Number of dome-shaped nests (+barber traps) × VI

		NDVI	MSR	MCARI2
Barber traps –	ρ Spearman	0,316	0,316	0,316
number of species	p-value	0,684	0,684	0,684
Barber traps –	ρ Spearman	0,400	0,400	0,400
number of species	p-value	0,600	0,600	0,600
Number of dome- shaped nests	ρ Spearman	0,516	0,516	0,637
	p-value	0,021	0,021	0,019

Figure 21: Correlation between number dome-shaped (+barber traps) nests and vegetation indices [Coniferous]

Chiliński, Mazurkiewicz, Krzysztofiak, Tomelleri Correlation between vegetation indices and ant populations

- Number of ants species was corellated (-) with VI only in coniferous forest
- Number of dome-shaped nests was correlated (+) in both ecosystems
- Correlation coefficient (significant) was in range 0.5-0.7
- No significant differences between vegetation indices

- Spatial analysis of NDVI distribution
- Switch from spectrometers to NDVI micro-cameras (Mapir)
- Change of large UAV system to small of-the-shelf solution 3DR Solo, DJI Phantom?
- Parallel measurements (two / three teams)

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Conslusions

- Number of ants species was corellated (-) with VI only in coniferous forest
- Number of dome-shaped nests was correlated (+) in both ecosystems
- Correlation coefficient (significant) was in range 0.5-0.7
- No significant differences between vegetation indices

Plans for 2018

- Spatial analysis of NDVI distribution
- Switch from spectrometers to NDVI micro-cameras (Mapir)
- Change of large UAV system to small of-the-shelf solution 3DR Solo, DJI Phantom?
- Parallel measurements (two / three teams)

- ・ 同 ト ・ ヨ ト ・ ヨ ト

Conslusions

- Number of ants species was corellated (-) with VI only in coniferous forest
- Number of dome-shaped nests was correlated (+) in both ecosystems
- Correlation coefficient (significant) was in range 0.5-0.7
- No significant differences between vegetation indices

Plans for 2018

- Spatial analysis of NDVI distribution
- Switch from spectrometers to NDVI micro-cameras (Mapir)
- Change of large UAV system to small of-the-shelf solution 3DR Solo, DJI Phantom?
- Parallel measurements (two / three teams)

- (四) (三) (三)

- Number of ants species was corellated (-) with VI only in coniferous forest
- Number of dome-shaped nests was correlated (+) in both ecosystems
- Correlation coefficient (significant) was in range 0.5-0.7
- No significant differences between vegetation indices

- Spatial analysis of NDVI distribution
- Switch from spectrometers to NDVI micro-cameras (Mapir)
- Change of large UAV system to small of-the-shelf solution 3DR Solo, DJI Phantom?
- Parallel measurements (two / three teams)

- ・ 同 ト ・ ヨ ト ・ ヨ ト

- Number of ants species was corellated (-) with VI only in coniferous forest
- Number of dome-shaped nests was correlated (+) in both ecosystems
- Correlation coefficient (significant) was in range 0.5-0.7
- No significant differences between vegetation indices

- Spatial analysis of NDVI distribution
- Switch from spectrometers to NDVI micro-cameras (Mapir)
- Change of large UAV system to small of-the-shelf solution 3DR Solo, DJI Phantom?
- Parallel measurements (two / three teams)

- ・ 同 ト ・ モ ト ・ モ ト

- Number of ants species was corellated (-) with VI only in coniferous forest
- Number of dome-shaped nests was correlated (+) in both ecosystems
- Correlation coefficient (significant) was in range 0.5-0.7
- No significant differences between vegetation indices

- Spatial analysis of NDVI distribution
- Switch from spectrometers to NDVI micro-cameras (Mapir)
- Change of large UAV system to small of-the-shelf solution 3DR Solo, DJI Phantom?
- Parallel measurements (two / three teams)

▲□→ ▲ □→ ▲

- Number of ants species was corellated (-) with VI only in coniferous forest
- Number of dome-shaped nests was correlated (+) in both ecosystems
- Correlation coefficient (significant) was in range 0.5-0.7
- No significant differences between vegetation indices

- Spatial analysis of NDVI distribution
- Switch from spectrometers to NDVI micro-cameras (Mapir)
- Change of large UAV system to small of-the-shelf solution 3DR Solo, DJI Phantom?
- Parallel measurements (two / three teams)

- Number of ants species was corellated (-) with VI only in coniferous forest
- Number of dome-shaped nests was correlated (+) in both ecosystems
- Correlation coefficient (significant) was in range 0.5-0.7
- No significant differences between vegetation indices

- Spatial analysis of NDVI distribution
- Switch from spectrometers to NDVI micro-cameras (Mapir)
- Change of large UAV system to small of-the-shelf solution 3DR Solo, DJI Phantom?
- Parallel measurements (two / three teams)

- Number of ants species was corellated (-) with VI only in coniferous forest
- Number of dome-shaped nests was correlated (+) in both ecosystems
- Correlation coefficient (significant) was in range 0.5-0.7
- No significant differences between vegetation indices

- Spatial analysis of NDVI distribution
- Switch from spectrometers to NDVI micro-cameras (Mapir)
- Change of large UAV system to small of-the-shelf solution 3DR Solo, DJI Phantom?
- Parallel measurements (two / three teams)

- Number of ants species was corellated (-) with VI only in coniferous forest
- Number of dome-shaped nests was correlated (+) in both ecosystems
- Correlation coefficient (significant) was in range 0.5-0.7
- No significant differences between vegetation indices

- Spatial analysis of NDVI distribution
- Switch from spectrometers to NDVI micro-cameras (Mapir)
- Change of large UAV system to small of-the-shelf solution 3DR Solo, DJI Phantom?
- Parallel measurements (two / three teams)

Thank you for your attention

mich@igf.fuw.edu.pl

Chiliński, Mazurkiewicz, Krzysztofiak, Tomelleri Correlation between vegetation indices and ant populations