

OPTIMISE data for understanding phenology and carbon cycling

Lars Eklundh, Hongxiao Jin, Zhanzhang Cai

Dept. of Physical Geography and Ecosystem Science, Lund University Natascha Kljun

Dept of Geography, College of Science, Swansea University, Swansea, UK, and Centre for Environment and Climate, Lund University, Lund, Sweden.

OPTIMISE Final Conference 21-23 February 2018

Contents

- Spectral data collection networks
- Projects gaining from spectral data sampling in OPTIMISE

A collaborative network for spectral data collection: NordSpec

- Inspired by SpecNet, EUROSPEC and OPTIMISE
- •In collaboration with ICOS Sweden and SITES
- For satellite data validation and improved process knowledge
- http://nordspec.nateko.lu.se

Eklundh et al. 2011, Sensors, 11, 7678-7709.

Lund University / Department of Physical Geography

Site name	Vegetation type	Lat.	Fluxes?
Svalbard	Polar tundra	78°	Yes
Zackenberg	High Arctic fen	74°	Yes
Abisko	Arctic birch forest and alpine heath	68°	No
Abisko Stordalen	Dry and wet peatland	68°	Yes
Tarfala	Alpine heath	68°	No
Svartberget	Boreal pine forest	64°	Yes
Degerö	Boreal peatland	64°	Yes
Röbäcksdalen	Agriculture	64°	No
Hyytiälä	Boreal pine forest	61°	Yes
Erken	Lake	60°	Yes
Norunda	Boreal mixed coniferous forest + clearcut	60°	Yes
Grimsö	Mixed coniferous	60°	No
Skogaryd	Hemi-boreal spruce forest	57°	Yes
Asa	Spruce forest	57°	Yes
Fäjemyr	Peatland	56°	No
Hyltemossa	Temperate spruce forest	56°	Yes
Lönnstorp	Agriculture	56°	No
Senegal	Savanna	13°	Yes
Sudan	Savanna	11°	No
Kenva	Savanna and agriculture	1°	Yes

SITES – Swedish infrastructure for Ecosystem Science

SITES A nationally coordinated infrastructure for terrestrial and limnological field research. http://www.fieldsites.se/

SITES Spectral 2015 - 2022

Data collection on vegetation state and seasonal variations:

- Year-round multispectral measurements
- Seasonal drone flights
- Phenology cameras
- Satellite imagery

Free and open data policy

Ground measurements in NordSpec and SITES

Mountain heath (Tarfala)

Sub-arctic bog (Stordalen)

Sub-arctic forest (Abisko)

Boreal forest (Norunda)

Spectral measurements

Outdoor reflectance calibration (Jin and Eklundh, 2015, 2018)

Decagon sensors

SKYE sensors red, rededge, NIR, SWIR

CO₂ and NDVI at Abisko ICOS-Sweden site

Flux data: Jutta Holst; NDVI: Hongxiao Jin

Snow effect on NDVI

Multispectral UAV imaging in SITES Spectral

Regular flights throughout the growing seasons

Multispectral cameras www.micasense.com

RGB camera www.sony.com

Thermal camera www.flir.se

Pitchup Explorian

Stordalen mire, lat. 68° from UAV

675 m

Detail

Stordalen hillshading (UAV data)

Stordalen elevation (UAV data)

Some research lines based on multispectral data

- 1. Development and testing of new vegetation index: the Plant Phenology Index (PPI)
- 2. Development of methodology for time-series analysis of remotely sensed data
- 3. Development of methods for upscaling flux tower data to larger areas
- 4. Improved understanding of vegetation productivity, phenology, and the links to climate and meteorology

PPI Plant Phenology Index

Jin and Eklundh, 2014, A physically based vegetation index for improved monitoring of plant phenology. *Remote Sensing of Environment*, 152.

$$PPI = -K \times \ln \frac{M - DVI}{M - DVI_{Soil}}$$

- DVIDifference vegetation index: $R_{NIR} R_{red}$ DVI_{Soil} DVI for soilMMaximum DVI for canopy
- *K* Extinction coefficient

PPI for tracking Gross Primary Productivity

PPI properties

- Linear with green LAI
- Dynamic also in dense canopies
- Not sensitive to snow influence
- Found to be well related to GPP

Jin and Eklundh, 2014, **A physically based vegetation index for improved monitoring of plant phenology**. *Remote Sensing of Environment*, 152.

Phenology parameters based on PPI

Date of start-of-season (SOS) 2016

Product delivered to European Environment Agency (EEA) for creating a phenology indicator

Phenology variations 16 years from MODIS PPI

Jin et al., 2017, 2018 manuscript

Lund University / Department of Physical Geography and Ecosystem Science

-8

30°E

0 -1 -2

30°E

25°E

Lake

25°E

15°E

15°E

20°E

20°E

Lake

Using spectral data for time series model estimation

Testing the efficiency of five processing methods for time-series smoothing implemented in TIMESAT:

Savitzky-Golay, Lowess, Splines, Asymmetric Gaussian and Logistic functions

Comparison against spectral data at 10 sites

Cai, Z.; Jönsson, P.; Jin, H.; Eklundh, L. **Performance of Smoothing Methods for Reconstructing NDVI Time-Series and Estimating Vegetation Phenology from MODIS Data.** *Remote Sens.* **2017**, *9*, 1271.

New methods for processing Sentinel-2 and Landsat data in TIMESAT

functions Robust to data gaps Jönsson, Cai, Melaas, Friedl, Eklundh, 2018, A method for robust estimation of vegetation seasonality from

Landsat and Sentinel-2 time

series data. Submitted.

Box constrained

200

180

160

140

120

100

80

60

separable least squares

fits to logistic model

Vegetation dynamics from Sentinel-2

Lund University / Department of Physical Geography and Ecosystem Science

Sugar beet

Upscaling carbon fluxes using flux footprint heterogeneity information

Satellite

UAV

2017-19

Conclusions

- 1. OPTIMISE and the EUROSPEC have supported several lines of research that strengthen our ability to obtain and understand data on important relationships on the dynamic interactions of vegetation and climate across a wide range of global ecosystems
- 2. Networks for data exchange and collaboration are instrumental in pushing this research forward

Thank you!

E-mail: lars.eklundh@nateko.lu.se

Lund University: http://www.nateko.lu.se NordSpec: http://nordspec.nateko.lu.se

PPI formulation

$$PPI = -K \times \ln \frac{M - DVI}{M - DVI_{Soil}}$$

DVIDifference vegetation index: $R_{NIR} - R_{red}$ DVI_{Soil} DVI for soil

- *M* Maximum *DVI* for canopy
- *K* Extinction coefficient

$$K = \frac{0.25 \cdot \cos(\theta)}{(1 - d_c) \cdot G + d_c \cdot \cos(\theta)} \times \frac{1 + M}{1 - M}$$

- θ Solar zenith angle
- d_c Diffuse fraction of solar radiation
- *G* Leaf angular distribution function

PPI needs reflectance data transformed to nadir viewing geometry

