Hyperspectral airborne imagery for carbon flux modelling in a wood-pasture ecosystem

Javier Pacheco-Labrador

PhD student, Environmental Remote Sensing and Spectroscopy Laboratory (SpecLab – CSIC)

SUMMARY

- 1. Introduction
- 2. Methods
- 3. Estimation of Sun Induced Fluorescence
- 4. Results
- 5. Preliminar discussion

1. Introduction

- Carbon fluxes modeled from remote sensors (Gamon et al. 2006 and 2011)
 - WHAT is measured?
 - Mix of different covers
 - From WHERE does the fluxes come from?
 - Spatial aggregration of spectral variables and flux data
 - WHEN spectral and flux variables are related?
 - Temporal aggregration of flux data and spectral variables
 - What do spectral variables mean?

1. Introduction

- To adress these questions
 - High spatial resolution
 - Different strategies to select the area from where spectal data are related with the flux data
 - Different time windows from where flux data are related with spectral variables
 - Use different models to relate the variables

- 8 Airborne hyperspectral images
 - CASI (VNIR sensor, INTA)
 - Majadas del Tiétar site
 - Grass pasture ecosystem
 - 1-3 EC towers
 - 4 different dates
 - Supervised classification
 - Grass / Trees
 - Soil-roads / Shadow-water

Eddy Covariance Data

- Selection of different areas for pixel extraction
 - Modis pixels (centered)
 - 250 m
 - 500 m

- Footprint analysis PDFs
 - Corresponding to the periods of EC data aggregation
 - Work in progress...

- GPP Models
 - $-GPP = \varepsilon \times fPAR \times PAR$ (Monteith 1972,1977)

- Model 1: $GPP = a + b \times SVI$
- Model 2: $GPP = (a + b \times SVI) \times PAR$
- Model 3: $GPP = (a + b \times SVI) \times (c + d \times \varepsilon) \times PAR$

- Data integration
 - Each model
 - Each sampling area type
 - Grass
 - Grass & Trees
 - All

- Intra-day (± 12 h)
- Inter-day (± 9.5 d)

Spectral Vegetation Indices

$$NDVI = \frac{\rho_{800} - \rho_{680}}{\rho_{800} + \rho_{680}} \qquad RDVI = \frac{\rho_{800} - \rho_{670}}{\sqrt{\rho_{800} + \rho_{670}}} \qquad Vogelmann 1 = \frac{\rho_{740}}{\rho_{720}}$$

$$EVI = 2.5 \times \frac{\rho_{858} - \rho_{645}}{\rho_{858} + 6 \times \rho_{645} - 7.5 \times \rho_{469} + 1}$$

$$TCARI/OSAVI = \frac{3 \times \left[(\rho_{700} - \rho_{670}) - 0.2 \times (\rho_{700} - \rho_{550}) \times \frac{\rho_{700}}{\rho_{670}} \right]}{(1 + 0.16) \times (\rho_{800} - \rho_{670}) / (\rho_{800} + \rho_{670} + 0.16)}$$

 $PRI = \frac{\rho_{531} - \rho_{570}}{\rho_{531} + \rho_{570}}$

- Light Use Efficiency
- PAR: global radiation

3. Estimation of Sun Induced Fluorescence

- University of Milano-Bicocca
 - Micol Rossini (& Pablo Zarco-Tejada)
 - Fluxpec Stay + STMS (Cost Action Optimise)

- Attempt to retrieve SIF (~LUE)
 - FLD & 3FLD
 - Non-fluorescent targets: $L_i = k_1 L_o + k_2$
 - F_{760} retrieval: $k_3L_f = L_i (k_1L_o + k_2)$

3. Estimation of Sun Induced Fluorescence

Problems F₇₆₀ retrieval

3. Estimation of Sun Induced Fluorescence

• Bias formulation (from Maier et al. (2002))

Further details in the STMS report.

Should be published soon in: http://optimise.dcs.aber.ac.uk/s tsms/

Biased coefficients actually adjusted

4. Results

250 m x 250 m

500 m x 500 m

4. Results

Relationships in the time domain

4. Results

Understanding errors

5. Preliminar discussion

- No large differences with simulated MODIS pixels
 - Footprint analysis: to be done...

- Spectral mixture
 - Mix of vegetation spectra do not improves estimates (different relationships)
 - Non-vegetated cover slightly increase errors

5. Preliminar discussion

- Temporal aggregation of flux data
 - In general, daily averages and averages of more several days are better predicted than instantaneous GPP

- Model used
 - Including radiation improves estimation further from the flight
 - PRI does not always lead to better results

Questions & suggestions?

THANKS!!!