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INTRODUCTION 

The SWAMP summer school was organized in a wetland area near Obrzycko-Rzecin in Poland 
during the peak-growing season (July 6th-16th  2015). The summer school was aimed at using 
airborne hyperspectral data as well as (near-)ground data to determine Earth surface reflectance 
and fluorescence which play a role in supporting satellite mission design and use (e.g. FLEX) and 
which support multi-scale (“leaf to ecosystem”) land-atmosphere exchange modelling studies.  

Photosynthesis is the crucial life sustaining process of plants by which the energy from the sun in 
conjunction with H2O and CO2 is assimilated into living plant matter. Carbon exchange can be 
measured directly through the use of gas chamber measurements, Eddy Covariance and leaf-level 
gas exchange measurements. However, measuring photosynthesis directly over large areas is not 
possible, and thus it is often estimated based on other variables which can be used to approximate 
it. Leaf level radiative transfer models, such as PROSPECT (Jacquemoud and Baret, 1990), have 
long been used to study how changes in plant structure and biochemistry influence leaf reflec-
tance. Imaging spectroscopy data may be used to retrieve vegetation biochemical parameters, 
because the higher information content in hyperspectral data increases the degrees of freedom 
required for model inversion compared to using broadband data and simple VIs (e.g. Garbulsky et 
al., 2011). Vegetation stress can be detected using spectroscopic data due to the reflectance, 
transmittance and absorption of a leaf being influenced by the structure, water content and pig-
ment concentration of a leaf as well as the incident irradiance (e.g. Jacquemoud and Baret, 1990). 
Changes occurring at an ecosystem scale, such as drought, can be detected using remote sens-
ing, which enables us to estimate e.g. carbon sinks and sources.  
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According to Monteith (1972) the Net Primary Production (NPP) of an ecosystem is proportional to 
Absorbed Photosynthetically Active Radiation (APAR, 400-700 nm). However, to estimate NPP an 
estimate of Light Use Efficiency (LUE) is needed. Photochemical Reflectance Index (PRI, normal-
ized difference ratio of bands at 531 and 570 nm) is sensitive to changes in the xanthopyll cycle 
(Gamon et al. 1992) which can be used to approximate LUE. Studies have shown that SIF can be 
used to track physiological regulation of photosynthesis and that more accurate estimates of 
Gross Primary Production (GPP) may be obtained by including estimates of SIF into GPP model-
ling approaches (e.g. Damm et al. 2009). The potential to obtain estimates of SIF using remote 
sensing may enhance our understanding diurnal variation of LUE and plant stresses both local and 
global scales (e.g. Damm et al. 2009).  

The aim of our study (GROUP A) was to collect spectral data for the calibration and validation  of 
‘homogenous’ targets selected within the study area. The targets had to fulfil the following condi-
tions: 1) Aerial extend big enough to cover at least 3X3 pixels of the airborne image data (APEX 
and HyPlant), these were acquired during the SWAMP summer school as well, and 2) High homo-
geneity. Those calibration/validation targets represented the most homogeneous, natural and ac-
cessible patchesalthough a certain amount of heterogeneity is still present within the samples. 
Therefore, the others scientific goals were to map this detailed scale heterogeneity of the study 
site at high spectral resolution, and to quantify spectroscopic uncertainties. As reflectance of an 
object is influenced by its spectral and structural composition, we aim to assess both.  The data 
were collected using ASD FieldSpec spectrometer and processed using SPECCHIO. In addition, 
we processed data from the Rikola imaging instrument on-board an UAV platform. Field spectros-
copy data were used to calibrate and validate remotely sensed data from HyPlant and APEX sen-
sors.  

During the field campaign our group mission was to measure the ground reference targets which 
will later be used for the validation and calibration of the airborne sensor data. Other groups mis-
sions were: B – LAI (leaf area index) measurements using SunScan Canopy Analyser, spectral 
imaging using the Rikola instrument onboard a UAV, spectral measurements using SpectraVista 
SVC spectral-radiometer; C – Canopy level Solar Induced Fluorescence (SIF) measurements us-
ing the OceanOptics HR4000 spectrometer, assisting with gas-chamber measurements; D – Leaf 
level SIF measurements using FluoWat spectrometer, leaf chlorophyll concentration using Apogee 
MC-100 Chlorophyll concentration meter, canopy level LAI and fAPAR using SunScan; E – SIF 
measurements from UAV platform using OceanOptics STS-VIS spectrometer. Altogether these 
missions resulted in a large spectral database which was stored in the online SPECCHIO data-
base. Airborne data was collected using HyPlant and APEX sensors and Unmanned Aerial Vehicle 
(UAV) data using RIKOLA sensors. HyPlant and APEX sensors had sufficient spectral resolution 
for the SIF retrieval, but the Rikola sensor onboard the one UAV did not, whereas the STS-VIS 
spectrometer onboard another UAV did have the ability to measure SIF In addition, fluxes and gap 
probabilities were measured during the field campaign. 

In this report we describe the methods of collecting and processing spectroscopy data during the 
field campaign. In addition to the goals specified above, it was possible to employ some spatial 
statistics whilest we also post-processed some of the data obtained by other groups. 

STUDY SITE 

The study area is located at Rzecin (52.75N, 16.29E) in Western-Poland (Fig. 1). The wetland is 
owned by Poznań University of Life Sciences. The studied peatland area covers approximately 
140 ha. The vegetation is dominated by the following plant species: Sphagnum sp., Dicranum sp., 
Carex sp., Phragmittes communis, Typha langifolia, Vaccinium oxicoccus, Drosera rotundifolia, 
Potentilla palustris, Ranunculus acris, and Menyantes trifoliate (Wojterska 2001). 

The annual mean air temperature and precipitation for the whole period of measurements were 
8.5ºC and 526 mm, respectively. The floating peat carpet of approximately 50 cm-thick is located 
in the middle of the wetland (Chojnicki 2010). 
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Fig. 1. Study site. 

METHODOLOGY 

The vegetation plot locations were selected to represent the most homogeneous patches for as 
many vegetation types as possible, and based on existing perpendicular elevated walkways to 

avoid trampling the vegetation (Fig. 2). Most of the plots were located on the northern side of the 
walkways. The tallest and most fertile vegetation were located next to the swamp edge, and the 
vegetation was turning into shorter and more xeric towards the centre of the swamp. In total, sev-
en vegetation plots were measured during the field campaign, these aimed to serve as validation 
targets for aerial image data. In addition, three aerial image calibration targets - tarps varying in 
albedo, i.e. white, grey and black - were measured. Each target was measured four times, except 
the grey tarp which was measured three times. The tarps were laid open on an area covered by 
sphagnum moss to level the tarps as much as possible. Photographs were taken from the sky dur-
ing the spectral measurements to document the sky conditions prevailing at the moment of the 
measurements. In addition, vegetation plots were photographed with a reference person holding a 
tape measure to quantify the height and structure of the vegetation.     

The ground reference spectra were collected using ASD FieldSpec device and collected spectra 
were normalized using a Spectralon panel. The ASDs Sensor head was attached to a 1 m stick in 
order to extend the location of the FOV beyond the walkways thus also avoiding having to tram-
pleon the vegetation in the plot area. The ground area which was covered by the ADS measure-
ments was approximately 1 m × 2.5 m. The Spectralon plate was levelled using a spirit-level and 
held still by a tripod. Data were collected in a ‘sweeping’ mode by moving the stick with attached 
ASD over the target.  

The sampling scheme was:  

5 x ref + 30 x tgt + 5 x ref  

where ‘ref’ denotes the Spectralon reference reading and ‘tgt’ is the target, with the number pre-
ceding denoting the number of measurements obtained.  

Measurements were conducted when there were no visible clouds between the sun and the FOV. 
Field measurements were done both sides of solar noon when the suns elevation was at its high-
est, which was also the time at which it was planned for the aeroplanes to fly over the study area. 
Hemispherical-Conical Reflectance Factors were calculated using Matlab and downloaded into 
SPECCHIO.  
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Fig. 2. Sampled plot locations.  

 

In addition to processing and assessing the calibration/validation spectral data, we also focused on 
the retrieval of selected biophysical parameters. Two approaches were tested: 1) Radiative trans-

fer modelling (RTM) using the ARTMO (www1) module (Cab, LAI and water content) (Fig. 3), and 

2) Hybrid model for LAI and Chlorophyll retrieval (Fig. 4, 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Subset of the RICOLA image data used for the biophysical parameters retrieval. 

 

Both approaches were tested on a subset of the RICOLA image data (high spatial and spectral 
resolution UAV based data from RIKOLA with 16 programmable bands between 500 and 900 nm, 
FWHM of 10 to 30 nm). For both, the same look up table (LUT) was used. This LUT was derived 
via parametrizing the RTM model for the RICOLA spectral resolution. 

RRIICCOOLLAA  ((CCIIRR))  
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For the RTM modeling, PROSPECT4 and 4SAIL models were employed to model leaf and canopy 

level spectral property, respectively (Fig. 4). LUT based inversion was employed to model Cab, 
LAI and water content using acost function. 

 

 

Fig. 4. Selected biophysical parameters retrieval through RTM inversion (LUT-based RTM in-
version) 

A hybrid model was employed to model LAI and Chlorophyll contend using a machine learning ap-

proach known as Random Forest (RF) (Breiman et al. 2001) (Fig. 5). RF was applied to LAI and 
Chlorophyll modeling across the study area. The RF method is an innovative machine learning ap-
proach that can perform multivariate non-linear regression, combining the performance of numer-
ous regression tree algorithms to predict biophysical parameters. The RF method receives a sub-
set of (x) input vectors, made up of the LUT. RF builds a number of regression trees (individual 
regression models) and averages the results. After K such trees {T(x)}1

K are grown, the RF regres-
sion predictor becomes: 
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More details regarding the performance and the specific characteristics of a RF model can be 
seen in Rodriguez-Galiano et al. (2015). 

 

The RF model was fitted to the relation between LAI and Chlorophyll obtained from the LUT and 
the spectral bands of the Rikola sensor as explanatory variables. The LUT was created to simulate 
the reflectivity of the spectral bands of Rikola sensor for 10,000 different values of LAI and Chlo-
rophyll content. These values were combined into a set of input feature vectors as an input to the 
RF algorithm. The performance of the method was evaluated using an embedded cross validation. 
RF models composed of 1000 trees were grown varying the number of random predictors from 1 
to 16. Random Forest method within the package implemented in the R statistical software was 
used to 
build the 
differ- ent 
models 
(Liaw and 
Wie-
ner, 
2002). 
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Fig. 5 Scheme of the hybrid model used for for LAI and Chlorophyll retrieval. 

RESULTS 

Field spectral data analysis 

The smallest changes in reflectance values occurred with black reference target GT3 (std=0.02) 

(Table. 1, Fig. 6). The largest differences during the measurement rounds appeared with the plot 
GT8, which was dominated by high grasses. For most vegetation plots the standard deviation of 
spectra between the rounds was ~0.05. As the vegetation structure and species composition got 
more heterogeneous the standard deviation between rounds increased. For bright targets, such as 
GT2 and GT1, the standard deviation values were relatively large compared to coefficient of varia-
tion. As the vegetation height increased the between round variability of spectra also increased. 
Our results showed that smallest changes in vegetation spectra was observed in plot GT7 covered 
by grasses and 20% dry matter, and the largest in plot GT8 covered by high grasses and 10% dry 
matter.  

 

 

Plot n Std. CV% Description: 

GT2 4 0.05 10.22 ground white reference 

GT1 3 0.05 14.03 ground grey reference 

GT7 4 0.04 23.45 high grass, 20% dry matter 

GT10 4 0.05 24.88 high green grass 

GT4 4 0.04 25.52 vegetation, grass 

GT5 4 0.05 27.49 vegetation, grass, moss (yellow), green and dry grass 

GT6 4 0.05 27.90 vegetation(higher cca 50 cm), grass, green, green moss 

GT9 4 0.05 30.57 very high grass, wet, growing in water 

GT3 4 0.02 37.69 ground black reference 

GT8 4 0.08 49.38 high grass, 10% dry matter 
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Table 1. Field plot description and results. Plot = plot ID, n = number of measurements, Std. = 
standard deviation between different measurements rounds, CV% = Coefficient of variation. 
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Fig. 6. The mean and standard deviation of the reference tarps a-c and vegetation plots d-j: a) 

white, b) grey, c) black, d) GT4, e) GT5, f) GT6, g) GT7, h) GT8, i) GT9, j) GT10.    
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Biophysical parameters retrieval 
 

Employing the RTM model it was possible to model the Cab content successfully (Fig. 7). The re-

trieved values were within the range that was measured in the field by a different group. In addi-

tion, the CV values are mainly below 20%. For the LAI, for most of the area the CV values were 

below 10%, however, some parts showed very high CV values (80%) (Fig. 8, right panel). The val-

ue range was too high when compared to the field measurements. This shows that the model 

would need a further fine tuning. The worse results were obtained for the water content modelling 

(Fig. 9), the CV values are overall higher than 60%.  

 

Fig. 7. Cab retrieval employing the RTM. 

 

Fig. 8. LAI retrieval employing the RTM. 

 

Fig. 9 Water content retrieval employing the RTM. 
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Two different models of LAI and Chlorophyll were built on the basis of the LUT. The percentage of 
variation (pseudo-R2) explained by the LAI and Chlorophyll models were equal to 0.73 and 0.96 
μg/cm-2, and the root mean square error equal to 1.02 and 4.62 μg/cm-2 respectively.   

 

 

Figure 10 Predicted LAI (left) and Chlorophyll (right). 

 

DISCUSSION 

The uncertainties related to spectroscopy need to be understood before meaningful inference can 
be made. A non-exhaustive list include lens aberration, saturation of the signal, degradation of the 
detectors, atmospheric and hydrometeorological parameters (changes in moisture, cloud cover-
age, temperature and pressure), calibration wavelengths, directional distribution of incoming irra-
diation etc. 

Some of the variations were due to different people taking measurements at different times of the 
same location. We could not make sure the exact same spots was measured at every round. The 
angle and height of the stick where the ASD head was attached changed slightly due to the vary-
ing heights of individuals taking the measurements. As the day progressed the sun angle 
changed, which we could not take into account while we were measuring. We tried to reduce the 
effect of background or soil/water influence on the spectra by selecting areas which have fewer 
gaps between vegetation. Yet the influence of shadowing by taller plants cannot be neglected.   

In addition, we made an attempt to retrieve selected biophysical parameters using the RICOLA 
data. The Cab retrieval was the most reliable while modelling the water content was the most 
problematic. The Ricola data don’t cover the optimal spectral range (500-900 nm), as for modeling 
the water content the longer wavelengths would have been more beneficial. However, the RICOLA 
data seems to be promising for modelling the chlorophyll as well as LAI (after some fine tuning). 

Systematic errors may be due to the Spectralon panel which was moved between every vegetation 
plot. The tarps were probably the worst to measure, because they were not leveled at all due to 
understory vegetation. In addition, we could not take into account changes in direct and diffuse 
radiation. Small clouds might have influenced our results. Cirrus clouds were probably avoided due 
to variable illumination conditions. However, our results demonstrated that the repeatability of the 
spectral measurements was relatively good although slight changes might have occurred during 
the measurements. 

Z komentarzem [1]: LAI is unitless as it is a ratio of m2 

/ m2. In literature μg/cm-2 is used. 

Z komentarzem [VRG2]: Veronika, what are the units 
for LAI and Cab 
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Any future study could look at how the implementation of various machine-learning algorithms 
could be refined to improve retrievals of canopy level biochemical and biophysical variables.  A 
Bayesian regularisation approach could be implemented with prior information from other datasets.  

CONCLUSION 

We succeeded in completing our objective to collect ground reference data for the calibration and 
validation of the airborne surveys. The error bars of the spectra describe the sum of errors intro-
duced by different error sources during the day, and thus can be used to quantify the relative het-
erogeneity of the different vegetation types. The different error sources were discussed which 
could have contributed to the variation in the datasets. 

Multivariate non-parametric models based on the LUT and the UAV Rikola sensor were able to 
predict LAI and Chlorophyll accurately (pseudo R2 equal to 0.73 and 0.96, respectively; RMSE 
equal to 1.02 days and 4.69μg/cm-2, respectively). 
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