Retrieving photosynthesis from leaf chlorophyll fluorescence and green reflectance

> Nastassia Vilfan Christiaan van der Tol Wouter Verhoef

Netherlands Organisation for Scientific Research

 Could reflectance and chlorophyll fluorescence provide more information about photosynthesis, when used together?

- Could reflectance and chlorophyll fluorescence provide more information about photosynthesis, when used together?
 - RT model coupled to a biochemical model
 - The SCOPE model (Van der Tol et al. (2009))

THE STRUCTURE OF SCOPE

THE STRUCTURE OF SCOPE

mbol
ъb
car
ant
N
lm
3
ſ
c

20 FLUSPECT Parameter Symbol Chlorophyll a+b content $C_{\rm ab}$ Total carotenoid content $C_{\rm car}$ C_{ant} Anthocyanin content $C_{\rm w}$ Water content $C_{\rm dm}$ Dry matter content NLeaf mesophyll structure parameter Senescence material (brown pigments) $C_{\mathbf{s}}$ Fluorescence quantum efficiency for PS-I η_{I} Fluorescence quantum efficiency for PS-II η_{II} Xanthophyll cycle EPS parameter $C_{\mathbf{x}}$

Parameter	Symbol
Chlorophyll a+b content	$C_{\rm ab}$
Total carotenoid content	$C_{\rm car}$
Anthocyanin content	C_{ant}
Water content	$C_{\rm w}$
Dry matter content	$C_{\rm dm}$
Leaf mesophyll structure parameter	N
Senescence material (brown pigments)	$C_{\rm s}$
Fluorescence quantum efficiency for PS-I	η_{I}
Fluorescence quantum efficiency for PS-II	η_{II}
Xanthophyll cycle EPS parameter	$C_{\mathbf{x}}$

Parameter	Symbol
Chlorophyll a+b content	$C_{\rm ab}$
Total carotenoid content	$C_{\rm car}$
Anthocyanin content	C_{ant}
Water content	$C_{\rm w}$
Dry matter content	$C_{\rm dm}$
Leaf mesophyll structure parameter	N
Senescence material (brown pigments)	$C_{\rm s}$
Fluorescence quantum efficiency for PS-I	η_{I}
Fluorescence quantum efficiency for PS-II	η_{II}
Xanthophyll cycle EPS parameter	$C_{\mathbf{x}}$

Vilfan, N., van der Tol, C., Muller, O., Rascher, U., & Verhoef, W. (2016). Fluspect-B: A model for leaf fluorescence, reflectance and transmittance spectra. *Remote Sensing of Environment*, *186*, 596–615. <u>http://doi.org/10.1016/j.rse.2016.09.017</u>
Vilfan, N., van der Tol, C., Yang, P., Wyber, R., Malenovský, Z., Robinson, S. A., & Verhoef, W. (2017). A model for leaf dynamic xanthophyll cycle reflectance. *Submitted to Journal of Remote Sensing of Environment*.

Féret, J.-B., Gitelson, A. A., Noble, S. D., & Jacquemoud, S. (2017). PROSPECT-D: Towards modeling leaf optical properties through a complete lifecycle. *Remote Sensing of Environment*, 193, 204–215. http://doi.org/10.1016/j.rse.2017.03.004

BIOCHEMICAL MODEL

Van Der Tol, C., Berry, J. A., Campbell, P. K. E., & Rascher, U. (2014). Models of fluorescence and photosynthesis for interpreting measurements of solar-induced chlorophyll fluorescence. *Journal of Geophysical Research G: Biogeosciences*, 119(12), 2312–2327. http://doi.org/10.1002/2014JG002713

BIOCHEMICAL MODEL

COMBINED SIMULTANEOUS IRGA, PAM AND HYPERSPECTRAL

Most important parameters:

- Initial slope of light response curve
- Curvature of the light response
- Caboxylation capacity: highly variable

RETRIEVING VCMAX FROM GAS ECHANGE DATA

CO₂ curves

Light curves

CONCLUSIONS

- Coupled RT to biochemical models → new framework for retrieval of photosynthesis
- Relatively simple code, easily adjusted and upgraded
- Canopy...

CONCLUSIONS

- Coupled RT to biochemical models → new framework for retrieval of photosynthesis
- Relatively simple code, easily adjusted and upgraded
- Canopy...

Thank you!

UNIVERSITY OF TWENTE.

OPT

